Shoreline Dynamics and Evaluation of Cultural Heritage Sites on the Shores of Large Reservoirs: Kuibyshev Reservoir, Russian Federation
Abstract
:1. Introduction
2. Study Area
3. Archaeological Background
3.1. General Overview
3.2. Beganchik Site
4. Materials and Methods
5. Results
5.1. Volga River Dynamics
5.2. Archaeological Site Analysis
5.3. Cultural Heritage under Erosion Threat
5.4. Beganchik Site
5.4.1. Sector 1
5.4.2. Sector 2
5.4.3. Sector 3
6. Discussions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khon, V.C.; Mokhov, I.I. The hydrological regime of large river basins in Northern Eurasia in the XX–XXI centuries. Water Resour. 2012, 39, 1–10. [Google Scholar] [CrossRef]
- El-Younsy, A.R.; Essa, M.A.; Wasel, S.O. Sedimentological and geoenvironmental evaluation of the coastal area between Al-Khowkhah and Al-Mokha, southeastern Red Sea, Republic of Yemen. Environ. Earth. Sci. 2017, 76, 50. [Google Scholar] [CrossRef]
- Romanescu, G.; Mihu-Pintilie, A.; Ciurte, D.L.; Stoleriu, C.C.; Cojoc, G.M.; Tirnovan, A. Allocation of flood control capacity for a multireservoir system. Case study of the Bistrita River (Romania). Carpath. J. Earth. Environ. 2019, 14, 223–234. [Google Scholar] [CrossRef]
- Avakyan, A.B.; Podol’skii, S.A. Impact of reservoirs on the fauna. Water Resour. 2002, 29, 123. [Google Scholar] [CrossRef]
- Berka, R. Inland Capture Fisheries of the USSR; FAO Fisheries Technical Paper 311; FAO (Food and Agriculture Organization): Rome, Italy, 1989; p. 143. [Google Scholar]
- Vilmundardóttir, O.K.; Magnússon, B.; Gísladóttir, G.; Thorsteinsson, T. Shoreline erosion and aeolian deposition along a recently formed hydro-electric reservoir, Blöndulón, Iceland. Geomorphology 2010, 114, 542–555. [Google Scholar] [CrossRef]
- Su, X.; Nilsson, C.; Pilotto, F.; Liu, S.; Shi, S.; Zeng, B. Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir. Sci. Total Environ. 2017, 599–600, 1485–1492. [Google Scholar] [CrossRef]
- Jayakumar, K. Analysis of shoreline changes along the coast of Tiruvallur District, Tamil Nadu, India. J. Geogr. Cartogr. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Svyatko, S.V.; Reimer, P.J.; Schulting, R. Modern freshwater reservoir offsets in the Eurasian steppe: Implications for archaeology. Radiocarbon 2017, 59, 1597–1607. [Google Scholar] [CrossRef]
- Górski, K.; van den Bosch, L.V.; van den Wolfshaar, K.E.; Middelkoop, H.; Nagelkerke, L.A.J.; Filippov, O.V.; Zolotarev, D.V.; Yakovlev, S.V.; Minin, A.E.; Winter, H.V.; et al. Post-damming flow regime development in a large lowland river (Volga, Russian Federation): Implications for floodplain inundation and fisheries. River Res. Appl. 2012, 28, 1121–1134. [Google Scholar] [CrossRef]
- Majerová, L.; Bábek, O.; Navrátil, T.; Nováková, T.; Štojdl, J.; Elznicová, J.; Hron, K.; Matys Grygar, T. Dam reservoirs as an efficient trap for historical pollution: The passage of Hg and Pb through the Ohře River, Czech Republic. Environ. Earth. Sci. 2018, 77, 574. [Google Scholar] [CrossRef]
- Pranzini, E. Coastal erosion and shore protection: A brief historical analysis. J. Coast. Conserv. 2017, 22, 827–830. [Google Scholar] [CrossRef]
- Pourkerman, M.; Marriner, N.; Morhange, C.; Djamali, M.; Amjadi, S.; Lahijani, H.; Beni, A.N.; Vacchi, M.; Tofighian, H.; Shah-Hoessein, M. Tracking shoreline erosion of “at risk” coastal archaeology: The example of ancient Siraf (Iran, Persian Gulf). Appl. Geogr. 2018, 101, 45–55. [Google Scholar] [CrossRef]
- Chapman, H.P.; Fletcher, W.G.; Thomas, G. Quantifying the effects of erosion on the archaeology of intertidal environments. A new approach and its implications for their management. Conserv. Manag. Arch. 2001, 4, 233–240. [Google Scholar] [CrossRef]
- Jazwa, C.S.; Johnson, K.N. Erosion of coastal archaeological sites on Santa Rosa Island, California. West. N. Am. Nat. 2018, 78, 302–327. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G.R. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef]
- Westley, K. Refining Broad-Scale Vulnerability Assessment of Coastal Archaeological Resources, Lough Foyle, Northern Ireland. J. Isl. Coast. Archaeol. 2018. [Google Scholar] [CrossRef]
- O’Rourke, M.J.E. Archaeological site vulnerability modelling: The influence of high impact storm events on models of shoreline erosion in the western Canadian Arctic. Open Archaeol. 2017, 3, 1–17. [Google Scholar] [CrossRef]
- Flatman, J. Conserving marine cultural heritage: Threats, risks and future priorities. Conserv. Manag. Arch. 2009, 11, 5–8. [Google Scholar] [CrossRef]
- Dillenia, I.; Troa, R.; Triarso, E. In situ preservation of marine archaeological remains based on geodynamic conditions, Raja Ampat, Indonesia. Conserv. Manag. Arch. 2016, 18, 364–371. [Google Scholar] [CrossRef]
- Howard, P.; Pinder, D. Cultural heritage and sustainability in the coastal zone: Experiences in south-west England. J. Cult. Herit. 2003, 4, 57–68. [Google Scholar] [CrossRef]
- Usmanov, B.; Nicu, I.C.; Gainullin, I.; Khomyakov, P. Monitoring and assessing the destruction of archaeological sites from Kuibyshev reservoir coastline, Tatarstan Republic, Russian Federation. A case study. J. Coast. Conserv. 2018, 22, 417–429. [Google Scholar] [CrossRef]
- Demin, A.P. The efficiency of water resources management in Volga basin. Water Resour. 2005, 32, 594–604. [Google Scholar] [CrossRef]
- Micklin, P.P. Environmental costs of the Volga-Kama cascade of power stations. Water Resour. Bull. 1974, 10, 565–572. [Google Scholar] [CrossRef]
- Avakyan, A.B. Volga-Kama cascade reservoirs and their optimal use. Lakes Reserv. Res. Manag. 1998, 3, 113–121. [Google Scholar] [CrossRef]
- Gainullin, I.I.; Sitdikov, A.G.; Usmanov, B.M. Destructive abrasion processes study in archaeological sites placement (Kuibyshev and Nizhnekamsk reservoirs, Russia). In Proceedings of the SGEM 2014 Scientific SubConference on Anthropology, Archaeology, History and Philosophy, Albena, Bulgaria, 3–9 September 2014; Volume 3, pp. 339–346. [Google Scholar] [CrossRef]
- Gainullin, I.I.; Khomyakov, P.V.; Sitdikov, A.G.; Usmanov, B.M. Study of anthropogenic and natural impacts on archaeological sites of the Volga Bulgaria period (Republic of Tatarstan) using remote sensing data. Proc. SPIE 9688 2016. [Google Scholar] [CrossRef]
- Nicu, I.C. Natural risk assessment and mitigation of cultural heritage sites in North-eastern Romania (Valea Oii river basin). Area 2019, 51, 142–154. [Google Scholar] [CrossRef]
- Döring, M.; Ratter, B.M.W. Coastal landscapes: The relevance of researching coastscapes for managing coastal change in North Frisia. Area 2018, 50, 169–176. [Google Scholar] [CrossRef]
- Ratushnyak, A.A. The role of aquatic macrophytes in hydroecosystems of Kuibyshev Reservoir (Republic of Tatarstan, Russia). Am.-Eurasian J. Agric. Environ. Sci. 2008, 4, 1–8. [Google Scholar]
- Zakonnov, V.V.; Ivanov, D.V.; Zakonnova, A.V.; Kochetkova, M.Y.; Malanin, V.P.; Khaidarov, A.A. Spatial and temporal transformations of bottom sediments in the Middle Volga reservoirs. Water Resour. 2007, 34, 540–548. [Google Scholar] [CrossRef]
- Panin, A.; Matlakhova, E. Fluvial chronology in the East European Plain over the last 20 ka and its palaeohydrological implications. Catena 2015, 130, 46–61. [Google Scholar] [CrossRef]
- Koposov, E.V.; Sobol, I.S.; Ezhkov, A.N. Prognozirovanie abrazionnoy i opolznevoy opasnosti poberezhiy Volzhskikh vodokhranilishch (Peculiar Predicting of Formation of Abrasion and Landslide Hazard Shores of the Volga Water Reservoirs). Vestnik MGSU 2013, 6, 170–176. (In Russian) [Google Scholar] [CrossRef]
- Golosov, V.; Yermolaev, O.; Rysin, I.; Vanmaercke, M.; Medvedeva, R.; Zaytseva, M. Mapping and spatial-temporal assessment of gully density in the Middle Volga region, Russia. Earth Surf. Process. Landf. 2018, 43, 2818–2834. [Google Scholar] [CrossRef]
- Biswas, A.K. Impacts of large dams: Issues, opportunities and constraints. In Impacts of Large Dams: A Global Assessment; Tortajada, C., Altinbilek, D., Biswas, A.K., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2012; pp. 1–18. [Google Scholar]
- Petrov, N. Cultural heritage management in Russia. In Cultural Heritage Management. A Global Perspective; Mauch, M.P., Smith, G.S., Eds.; University Press of Florida: Gainesville, FL, USA, 2010; pp. 153–161. [Google Scholar]
- Leonova, N.B. The Upper Palaeolithic of the Russian steppe zone. J. World Prehist. 1994, 8, 169–210. [Google Scholar] [CrossRef]
- Galimova, M.S. Final Palaeolithic—Early Mesolithic cultures with trapezia in the Volga and Dnieper basins: The question of origin. Archaeol. Baltica 2005, 7, 136–148. [Google Scholar]
- Zhilin, M.G. Early Mesolithic hunting and fishing activities in Central Russia: A review of the faunal and artefactual evidence from wetland sites. J. Wetl. Archaeol. 2014, 14, 91–105. [Google Scholar] [CrossRef]
- Lychagina, E.L.; Vybornov, A.A. Chronology of Kama Neolithic culture. Doc. Praehist. 2017, 152–161. [Google Scholar] [CrossRef]
- Demkina, T.S.; Borisov, A.V.; Demkin, V.A.; Khomutova, T.E.; Kuznetsova, T.V.; El’tsov, M.V.; Udal’tsov, S.N. Paleoecological Crisis in the Steppe of the Lower Volga Region in the Middle of the Bronze Age (III-II centuries BC). Eurasian Soil Sci. 2017, 50, 791–804. [Google Scholar] [CrossRef]
- Patrushev, V.S. Textile ceramics of the Early Iron Age in the Ardino settlement. Perm Univ. Herald-Hist. 2017, 36, 63–73. [Google Scholar] [CrossRef]
- Kazakov, E.P. Pamyatniki epohi kamnya v Zakame (Arheologicheskiy ocherk). Ch. 1. Stone Age Sites in the Trans-Kama Region (Archaeological Essay). Part 1; Institute of History named after Sh. Marjani: Kazan, Russia, 2011. (In Russian) [Google Scholar]
- Galimova, M.S. Pamyatniki pozdnego paleolita i mezolita v uste reki Kamyi (Upper Palaeolithic and Mesolithic Sites at the Mouth of the Kama River); «Yanus-K» Publ.: Moskow-Kazan, Russia, 2001. (In Russian) [Google Scholar]
- Galimova, M.S. Otchet ob arheologicheskih issledovaniyah stoyanki Beganchik, raspolozhennoy v zone abrazionnoy deyatelnosti Kuybyishevskogo vodohranilischa v Spasskom rayone Respubliki Tatarstan v 2013 godu (Report on Archaeological Investigation the Site of Beganchik Located in the Area of the Abrasion Activity of the Kuybyshev Reservoir in the Spassky District of the Republic of Tatarstan in 2013); The Archive of the Institute of Archaeology of Russian Academy of Sciences: Kazan, Russia, 2017. (In Russian) [Google Scholar]
- Callow, J.N.; May, S.M.; Leopold, M. Drone photogrammetry and KMeans point cloud filtering to create high resolution topographic and inundation models of coastal sediment archives. Earth Surf. Process. Landf. 2018, 43, 2603–2615. [Google Scholar] [CrossRef]
- Kinda, A. Nature of old maps: As primary source materials for historical geography. Earth Sci. 2018, 7, 260–267. [Google Scholar] [CrossRef]
- Gainullin, I.I.; Kasimov, A.; Khomyakov, P.V.; Usmanov, B.M. An integrated approach for Medieval hillforts study (Republic of Tatarstan, Russia). In Proceedings of the 3rd International Association of SGEM Conference, Albena, Bulgaria, 30 September 2016; Volume 3, pp. 247–254. [Google Scholar] [CrossRef]
- Nicu, I.C. Cultural heritage assessment and vulnerability using Analytic Hierarchy Process and Geographic Information Systems (Valea Oii catchment, North-eastern Romania). An approach to historical maps. Int. J. Disaster Risk Reduct. 2016, 20, 103–111. [Google Scholar] [CrossRef]
- Nicu, I.C. Tracking natural and anthropic risks from historical maps as a tool for cultural heritage assessment: A case study. Environ. Earth. Sci. 2017, 76, 330. [Google Scholar] [CrossRef]
- Litvinov, A.S.; Mineeva, N.M.; Papchenkov, V.G.; Korneva, L.G.; Lazareva, V.I.; Shcherbina, G.K.; Gerasimov, Y.V.; Dvinskikh, S.A.; Noskov, V.M.; Kitaev, A.B.; et al. Volga River Basin. In Rivers of Europe; Tockner, K., Uehlinger, U., Robinson, C.T., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 23–57. [Google Scholar]
- Melnikova, G.L. Peculiarities of Shallows in Regulated Reservoirs. In IIASA Professional Paper; IIASA (International Institute for Applied System Analysis): Laxenburg, Austria, 1977; p. 77. [Google Scholar]
- Nicu, I.C. Hydrogeomorphic Risk Analysis Affecting Chalcolithic Archaeological Sites from Valea Oii (Bahlui) Watershed, Northeastern Romania; An Interdisciplinary Approach, 1st ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Capuzzo, G.; Zanon, M.; Dal Corso, M.; Kirleis, W.; Barceló, J.A. Highly diverse Bronze Age population dynamics in Central-Southern Europe and their response to regional climatic patterns. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Nicu, I.C. Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: An approach to endangered cultural heritage. Environ. Earth Sci. 2018, 77, 79. [Google Scholar] [CrossRef]
- Hosner, D.; Wagner, M.; Tarasov, P.E.; Chen, X.; Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: An overview. Holocene 2016, 26, 1576–1593. [Google Scholar] [CrossRef]
- Panin, A.V.; Nefedov, V.S. Analysis of variations in the regime of rivers and lakes in the Upper Volga and Upper Zapadnaya Dvina based on archaeological-geomorphological data. Water Resour. 2010, 37, 16. [Google Scholar] [CrossRef]
- Ivanov, V.A. Southern CIS-Urals in the Great Migration Period—Archaeological and geographical context. Povolzhskaya Arkheol. 2017, 4, 8–23. [Google Scholar] [CrossRef]
- Demkin, V.A.; Yakimov, A.S.; Alekseev, A.O.; Kashirskaya, N.N.; El’tsov, M.V. Paleosol and paleoenvironmental conditions in the Lower Volga steppes during the Golden Horde period (13th–14th centuries AD). Eurasian Soil Sci. 2006, 39, 115–126. [Google Scholar] [CrossRef]
- Gainullin, I.I.; Khomyakov, P.V.; Sitdikov, A.G.; Usmanov, B.M. Qualitative assessment of the medieval fortifications condition with the use of remote sensing data (Republic of Tatarstan). Proc. SPIE 10444 2017. [Google Scholar] [CrossRef]
- Yermolaev, O.P.; Igonin, M.E.; Bubnov, A.Y.; Pavlova, S.V. Landshaftyi Respubliki Tatarstan. Regionalnyiy Landshaftno-Ekologicheskiy Analiz (Landscapes of the Republic of Tatarstan. Regional Landscape-Ecological Analysis); «Slovo» Publ.: Kazan, Russia, 2007. (In Russian) [Google Scholar]
- Falloon, P.D.; Betts, R.A. The impact of climate change on global river flow in HadGEM I simulations. Atmos. Sci. Lett. 2006, 7, 62–68. [Google Scholar] [CrossRef]
- Kouzmina, J.V.; Treshkin, S.E. Climate changes in the basin of the Lower Volga and their influence on the ecosystem. Arid Ecosyst. 2014, 4, 142–157. [Google Scholar] [CrossRef]
No. Crt. | YOC | RA (km2) | Volume (km3) | IC (103 kW) | AO (109 kWh) | TOU | |
---|---|---|---|---|---|---|---|
Total | Useful | ||||||
1 | 1937 | 327 | 1.2 | 1 | 30 | 0.12 | WNWrFPR |
2 | 1940 | 249 | 1.2 | 0.8 | 110 | 0.25 | PNWRF |
3 | 1941 | 4550 | 25.4 | 16.6 | 330 | 1.05 | PNWFFlWrRT |
4 | 1956 | 1770 | 8.7 | 2.8 | 520 | 1.4 | PNWFWrRT |
5 | 1981 | 3780 | 12.6 | 5.4 | 1404 | 3.3 | PNWRFWrT |
6 | 1958 | 6500 | 57.3 | 33.9 | 2300 | 10.2 | PNFIWFlWrRT |
7 | 1968 | 1950 | 12.8 | 1.7 | 1290 | 5.3 | PNWFlRTWr |
8 | 1960 | 3165 | 31.4 | 8.2 | 2530 | 10 | PNWFlFiWrRT |
9 | 1956 | 1845 | 12.2 | 9.8 | 504 | 1.7 | PTNFiWFRWr |
10 | 1961 | 1130 | 9.4 | 3.7 | 1000 | 2.2 | PNTWFiRWr |
11 | 1978 | 2305 | 13.8 | 4.6 | 1080 | 2.8 | PNTWFiRWr |
Type | Building | Burial Ground | Burial Mound (s) | Complex Site | Fortified Settlement/HILLFORT | Hoard | Surface Find | Tombstone | Unfortified Settlement | Total |
---|---|---|---|---|---|---|---|---|---|---|
Number | 2 | 103 | 25 | 4 | 40 | 17 | 179 | 4 | 915 | 1289 |
Affected (under water) | 0 | 82 | 21 | 3 | 31 | 14 | 156 | 4 | 780 | 1091 |
Not affected | 2 | 21 | 4 | 1 | 9 | 3 | 23 | 0 | 135 | 198 |
Age | Chalcolithic/Bronze Age | Early Iron Age | Middle Ages | Migration Period | Modern Time | Neolithic | Palaeolithic/Mesolithic | Not Identified | Total |
---|---|---|---|---|---|---|---|---|---|
Number | 566 | 45 | 275 | 148 | 11 | 164 | 20 | 60 | 1289 |
Affected (under water) | 490 | 39 | 223 | 118 | 6 | 144 | 19 | 52 | 1091 |
Not affected | 76 | 6 | 52 | 30 | 5 | 20 | 1 | 8 | 198 |
Observation Period | Years | Shoreline Retreat | Eroded Area | Specific Land Loss | Specific Volume Loss | ||
---|---|---|---|---|---|---|---|
m | m/year | ha | ha/year | n * 10−3 ha/km * year | thousands m3/km * year | ||
1958–1980 | 22 | 32.84 | 1.5 | 2.77 | 0.13 | 253.13 | 12.65 |
1980–2008 | 28 | 33.88 | 1.21 | 1.26 | 0.04 | 133.48 | 6.67 |
2008–2014 | 6 | 11.57 | 1.93 | 0.39 | 0.06 | 191.87 | 9.59 |
2014–2017 | 3 | 17.03 | 5.68 | 0.50 | 0.17 | 469.53 | 23.48 |
2017–2018 | 1 | 3.23 | 3.23 | 0.09 | 0.09 | 276.55 | 13.83 |
Observation Period | Years | Shoreline Retreat | Eroded Area | Specific Land Loss | Specific Volume Loss | ||
---|---|---|---|---|---|---|---|
m | m/year | ha | ha/year | n * 10−3 ha/km * year | thousands m3/km * year | ||
1958–1980 | 22 | 44.85 | 2.04 | 4.68 | 0.21 | 279.75 | 4.2 |
1980–2008 | 28 | 64.81 | 2.31 | 3.51 | 0.13 | 288.84 | 4.33 |
2008–2014 | 6 | 9.61 | 1.6 | 0.27 | 0.04 | 89.91 | 1.57 |
2014–2017 | 3 | 4.76 | 1.59 | 0.13 | 0.04 | 82.24 | 1.44 |
2017–2018 | 1 | 2.8 | 2.8 | 0.08 | 0.08 | 189.95 | 3.32 |
Observation Period | Years | Shoreline Retreat | Eroded Area | Specific Land Loss | Specific Volume Loss | ||
---|---|---|---|---|---|---|---|
m | m/year | ha | ha/year | n * 10−3 ha/km * year | thousands m3/km * year | ||
1958–1980 | 22 | 5.59 | 0.25 | 0.06 | - | 16.55 | 0.25 |
1980–2008 | 28 | 13.85 | 0.49 | 0.22 | 0.01 | 47.49 | 0.71 |
2008–2014 | 6 | 7.37 | 1.23 | 0.05 | 0.01 | 46.24 | 0.69 |
2014–2017 | 3 | 1.53 | 0.51 | 0.01 | - | 14.17 | 0.21 |
2017–2018 | 1 | 0.31 | 0.31 | 0.002 | 0.002 | 9.11 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicu, I.C.; Usmanov, B.; Gainullin, I.; Galimova, M. Shoreline Dynamics and Evaluation of Cultural Heritage Sites on the Shores of Large Reservoirs: Kuibyshev Reservoir, Russian Federation. Water 2019, 11, 591. https://doi.org/10.3390/w11030591
Nicu IC, Usmanov B, Gainullin I, Galimova M. Shoreline Dynamics and Evaluation of Cultural Heritage Sites on the Shores of Large Reservoirs: Kuibyshev Reservoir, Russian Federation. Water. 2019; 11(3):591. https://doi.org/10.3390/w11030591
Chicago/Turabian StyleNicu, Ionut Cristi, Bulat Usmanov, Iskander Gainullin, and Madina Galimova. 2019. "Shoreline Dynamics and Evaluation of Cultural Heritage Sites on the Shores of Large Reservoirs: Kuibyshev Reservoir, Russian Federation" Water 11, no. 3: 591. https://doi.org/10.3390/w11030591
APA StyleNicu, I. C., Usmanov, B., Gainullin, I., & Galimova, M. (2019). Shoreline Dynamics and Evaluation of Cultural Heritage Sites on the Shores of Large Reservoirs: Kuibyshev Reservoir, Russian Federation. Water, 11(3), 591. https://doi.org/10.3390/w11030591