Glacier Changes in the Qilian Mountains, Northwest China, between the 1960s and 2015
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Landsat Imagery
3.1.2. First Chinese Glacier Inventory (FCGI) and Second Chinese Glacier Inventory (SCGI)
3.1.3. Digital Elevation Models
3.1.4. Climate Data
3.2. Methods
3.2.1. Glacier Outline Delineation
3.2.2. Calculation of Glacier Area Variation
3.2.3. Uncertainty Assessment
4. Results
4.1. The Glacier Distribution in 2015
4.2. The Characteristics of Glacier Changes
4.2.1. The Overall Glacier Area Variations
4.2.2. Comparisons of Glacier Area Variations between Different Inventories
4.2.3. The Disappearance of Glaciers
4.2.4. The Volume Changes of Glaciers
4.3. Climatic Considerations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oerlemans, J. Quantifying global warming from the retreat of glaciers. Science 1994, 264, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Comput. Geom. 2013, 18, 95–123. [Google Scholar]
- Kargel, J.S. Global Land Ice Measurements from Space; Springer: Berlin/Heidelberg, Germany, 2014; pp. 205–228. [Google Scholar]
- Rivera, A.; Casassa, G.; Bamber, J.; Kääb, A. Ice elevation changes of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data. J. Glaciol. 2008, 51, 105–112. [Google Scholar] [CrossRef]
- Zemp, M.; Frey, H.; Gärtnerroer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Yang, G.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Zhang, J.; He, X.; Shangguan, D.; Zhong, F.; Liu, S. Impact of Intensive Glacier Ablation on Arid Regions of Northwest China and Its Countermeasure. J. Glaciol. Geocryol. 2012, 34, 848–854. [Google Scholar]
- Tian, H.; Yang, T.; Liu, Q. Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Ann. Glaciol. 2017, 55, 187–197. [Google Scholar] [CrossRef]
- Sun, M.; Liu, S.; Yao, X.; Guo, W.; Xu, J. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, J.; Qin, D.; Qin, X. Regional Glacier Volume Changes Derived from Satellite Data: A Case Study in the Qilian Mountains. J. Glaciol. Geocryol. 2013, 35, 583–592. [Google Scholar]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
- Li, Z.; Qin, X.; Wang, J.; Liu, Y.; Jing, H. Glaciers distribution characteristics and change detection from 2004 to 2015 in the Lenglongling in the east of Qilian mountains. Sci. Surv. Mapp. 2018, 43, 45–51. [Google Scholar]
- Wang, J.; Qin, X.; Li, Z.; Liu, Y.; Jing, H. Glaciers Change Detection from 2004 to 2015 in the Daxueshan, Qilian MTS. Remote Sens. Technol. Appl. 2017, 32, 490–498. [Google Scholar]
- Paul, F.; Barry, R.G.; Cogley, J.G.; Frey, H.; Haeberli, W.; Ohmura, A.; Ommanney, C.S.L.; Raup, B.; Rivera, A.; Zemp, M. Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol. 2009, 50, 119–126. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Yang, J. Geomorphology in China; Science Press: Beijing, China, 2013. [Google Scholar]
- Wang, Z.; Liu, C.; You, G. Glacier Inventory of China I Qilian Mountains; Lanzhou Institute of Glaciology and Cryopedology, CAS: Lanzhou, China, 1981. [Google Scholar]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. [Google Scholar]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S. The GAMDAM Glacier Inventory: A quality controlled inventory of Asian glaciers. Cryosphere Discuss. 2015, 8, 849–864. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Paul, F.; Raup, B.; Khalsa, S.J.S.; Armstrong, R. Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol. 2009, 50, 53–69. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.; Pieczonka, T.; Kunert, A. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol. 2008, 54, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.J. Glacier shrinkage across High Mountain Asia. Ann. Glaciol. 2016, 57, 41–49. [Google Scholar] [Green Version]
- Zemp, M.; Armstrong, R.; Gärtner-Roer, I.; Haeberli, W.; Hoelzle, M.; Kääb, A.; Kargel, J.S.; Khalsa, S.J.S.; Leonard, G.J.; Paul, F. Introduction: Global Glacier Monitoring—A Long-Term Task Integrating in Situ Observations and Remote Sensing. In Global Land Ice Measurements from Space; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Raup, B.; Kääb, A.; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Comput. Geosci. 2007, 33, 104–125. [Google Scholar] [CrossRef]
- Paul, F.; Andreassen, L.M. A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: Challenges and change assessment. J. Glaciol. 2009, 55, 607–618. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Granshaw, F.D.; Fountain, A.G. Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol. 2006, 52, 251–256. [Google Scholar] [CrossRef]
- Bolch, T.; Yao, T.; Kang, S.; Buchroithner, M.F. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 2010, 4, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Bayr, K.J.; Schöner, W.; Bindschadler, R.A.; Chien, J.Y.L. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens. Environ. 2003, 86, 566–577. [Google Scholar] [CrossRef]
- Bris, R.L.; Paul, F. An automatic method to create flow lines for determination of glacier length: A pilot study with Alaskan glaciers. Comput. Geosci. 2013, 52, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Hagg, W.; Mayer, C.; Lambrecht, A.; Kriegel, D.; Azizov, E. Glacier changes in the Big Naryn basin, Central Tian Shan. Glob. Planet. Chang. 2013, 110, 40–50. [Google Scholar] [CrossRef]
- Evans, I.S. Local aspect asymmetry of mountain glaciation: A global survey of consistency of favoured directions for glacier numbers and altitudes. Geomorphology 2006, 73, 166–184. [Google Scholar] [CrossRef]
- Wang, N.; He, J.; Pu, J.; Jiang, X.; Jing, Z. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin. Sci. Bull. 2010, 55, 3810–3817. [Google Scholar] [CrossRef]
- Liu, S.; Ding, Y.; Li, J.; Shangguan, D.; Zhang, Y. Glaciers in response to recent climate warming in western China. Quat. Sci. 2006, 26, 762–771. [Google Scholar]
- Zhang, Z.; Xu, J.; Liu, S.; Guo, W.; Wei, J.; Feng, T. Glacier changes since the early 1960s, eastern Pamir, China. J. Mt. Sci. 2016, 13, 276–291. [Google Scholar] [CrossRef]
- Liu, S.; Sun, W.; Shen, Y.; Gang, L. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, Northwest China, and consequence of glacier runoff for water supply. J. Glaciol. 2017, 49, 117–124. [Google Scholar]
- Radic, V.; Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. 2010, 115, F01010. [Google Scholar] [CrossRef]
- Grinsted, A. An estimate of global glacier volume. Cryosphere 2013, 7, 141–151. [Google Scholar] [CrossRef]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, S.; Shangguan, D.; Li, J.; Zhao, J. Thinning and Shrinkage of Laohugou No. 12 Glacier in the Western Qilian Mountains, China, from 1957 to 2007. J. Mt. Sci. 2012, 9, 343–350. [Google Scholar] [CrossRef]
- Cao, B.; Pan, B.; Gao, H.; Jiang, S.; Wen, Y.; Shangguan, D. Glacier Variation in the Lenglongling Range of Eastern Qilian Mountains from 1972 to 2007. J. Glaciol. Geocryol. 2010, 32, 242–248. [Google Scholar]
- Xie, Z.; Liu, C. Introduction to Glaciology; Shanghai Science Popular Press: Shanghai, China, 2010. [Google Scholar]
- Li, Z.; Han, T.; Jing, Z.; Yang, H.; Jiao, K. A Summary of 40-Year Observed Variation Facts of Climate and Glacier No.1 at Headwater of Ürümqi River, Tianshan, China. J. Glaciol. Geocryol. 2003, 25, 117–123. [Google Scholar]
- Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 2005, 308, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, B. Climatic warming in the Tibetan plateau during recent decades. Int. J. Climatol. 2015, 20, 1729–1742. [Google Scholar] [CrossRef]
- Qin, J.; Yang, K.; Liang, S.; Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang. 2009, 97, 321–327. [Google Scholar] [CrossRef]
Station Number | Name | Latitude | Longitude | Elevation |
---|---|---|---|---|
52633 | Tuole | 38.48 | 98.25 | 3820 |
52645 | Yeniugou | 38.25 | 99.35 | 4429 |
52657 | Qilian | 38.11 | 100.15 | 3597 |
52679 | Wuwei | 37.55 | 102.4 | 3272 |
52713 | Dachaidan | 37.51 | 95.22 | 3425 |
52765 | Menyuan | 37.23 | 101.37 | 3502 |
52787 | Wushaoling | 37.12 | 102.52 | 3339 |
Drainage Basin | FCGI | SCGI | Inventory in 2015 | |||||
---|---|---|---|---|---|---|---|---|
Name | Code | Area (km2) | Area (km2) | Number | Area (km2) | Number | Area (km2) | Number |
Datong River | 5J42 | 9765 | 40.97 | 108 | 20.82 | 68 | 18.91 | 71 |
Shiyang River | 5Y41 | 10,950 | 64.84 | 141 | 39.93 | 97 | 35.34 | 100 |
Heihe River | 5Y42 | 15,490 | 129.79 | 428 | 78.30 | 375 | 71.27 | 384 |
Beida River | 5Y43 | 9990 | 290.76 | 650 | 215.22 | 577 | 207.75 | 586 |
Shule River | 5Y44 | 17,630 | 589.68 | 639 | 509.87 | 660 | 497.34 | 682 |
Danghe River | 5Y45 | 17,050 | 232.66 | 308 | 203.73 | 318 | 198.02 | 325 |
Buh River-Qinghai Lake | 5Y51 | 14,370 | 14.71 | 21 | 10.28 | 24 | 9.44 | 24 |
Haltang River | 5Y56 | 20,630 | 310.18 | 239 | 283.48 | 268 | 273.52 | 276 |
Har Lake | 5Y57 | 4870 | 89.27 | 106 | 78.75 | 108 | 76.83 | 108 |
Iqe-Tatalin Gol River | 5Y58 | 9890 | 168.89 | 168 | 155.12 | 179 | 148.74 | 182 |
Bayan Gol River | 5Y59 | 5520 | 4.42 | 16 | 2.19 | 10 | 2.11 | 10 |
Total | 1936.17 | 2824 | 1597.69 | 2684 | 1539.28 | 2748 |
FCGI_ID | SCGI_ID | Longitude (°) | Latitude (°) | Area FCGI (km2) | Area SCGI (km2) | Mean Elevation (m) | Aspect (°) |
---|---|---|---|---|---|---|---|
5Y417G0004 | G101456E37746N | 101.46 | 37.75 | 0.2 | 0.049 | 4319.10 | 23.40 |
5Y427H0005 | G099131E38980N | 99.13 | 38.98 | 0.07 | 0.026 | 4896.70 | 144.60 |
5Y429B0006 | G099079E38955N | 99.08 | 38.96 | 0.09 | 0.010 | 4629.70 | 32.70 |
5Y435G0001 | G098587E38539N | 98.59 | 38.54 | 0.05 | 0.010 | 4684.30 | 12.80 |
5Y435K0005 | G098432E38595N | 98.43 | 38.60 | 0.09 | 0.015 | 4686.00 | 15.20 |
5Y571C0003 | G097356E38597N | 97.36 | 38.60 | 0.05 | 0.023 | 4972.80 | 44.30 |
5Y581H0004 | G095607E37998N | 95.61 | 38.00 | 0.08 | 0.032 | 5126.30 | 24.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Wang, N.; Chen, A.; Yang, X.; Hua, T. Glacier Changes in the Qilian Mountains, Northwest China, between the 1960s and 2015. Water 2019, 11, 623. https://doi.org/10.3390/w11030623
He J, Wang N, Chen A, Yang X, Hua T. Glacier Changes in the Qilian Mountains, Northwest China, between the 1960s and 2015. Water. 2019; 11(3):623. https://doi.org/10.3390/w11030623
Chicago/Turabian StyleHe, Jing, Ninglian Wang, An’an Chen, Xuewen Yang, and Ting Hua. 2019. "Glacier Changes in the Qilian Mountains, Northwest China, between the 1960s and 2015" Water 11, no. 3: 623. https://doi.org/10.3390/w11030623
APA StyleHe, J., Wang, N., Chen, A., Yang, X., & Hua, T. (2019). Glacier Changes in the Qilian Mountains, Northwest China, between the 1960s and 2015. Water, 11(3), 623. https://doi.org/10.3390/w11030623