Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Identify the Scope of the Analysis
2.2.2. Develop a Geospatial Database
2.2.3. Predict Connectivity for the Watershed
3. Results
4. Discussion and Future Work
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Dong, S.; Peng, M.; Yang, Z.; Liu, S.; Li, X.; Zhao, C. Effects of damming on the biological integrity of fish assemblages in the middle Lancang-Mekong River basin. Ecol. Indic. 2013, 34, 94–102. [Google Scholar] [CrossRef]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef] [Green Version]
- Moyle, P.B.; Mount, J.F. Homogenous rivers, homogenous faunas. Proc. Natl. Acad. Sci. USA 2007, 104, 5711–5712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha-Santino, M.B.; Bitar, A.L.; Bianchini, I. Chemical constraints on new man-made lakes. Environ. Monit. Assess. 2013, 185, 10177–10190. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Duan, X.B.; Liu, S.P.; Chen, D.Q.; Liu, M.D. Acoustic assessment of the fish spatio-temporal distribution during the initial filling of the Three Gorges Reservoir, Yangtze River (China), from 2006 to 2010. J. Appl. Ichthyol. 2013, 29, 1395–1401. [Google Scholar] [CrossRef]
- Agostinho, A.A.; Gomes, L.C.; Santos, N.C.; Ortega, J.C.; Pelicice, F.M. Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fish. Res. 2016, 173, 26–36. [Google Scholar] [CrossRef]
- Nedeau, E. The effect of an industrial effluent on an urban stream benthic community: Water quality vs. habitat quality. Environ. Pollut. 2003, 123, 1–13. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Suthar, S.; Sharma, J.; Chabukdhara, M.; Nema, A.K. Water quality assessment of river Hindon at Ghaziabad, India: Impact of industrial and urban wastewater. Environ. Monit. Assess. 2010, 165, 103–112. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Bai, Y.; Tian, Z.; Li, J.; Shao, X.; Mustavich, L.F.; Li, B.-L. Assessment of surface water quality via multivariate statistical techniques: A case study of the Songhua River Harbin region, China. J. Hydro-Environ. Res. 2013, 7, 30–40. [Google Scholar] [CrossRef]
- Valera, C.; Junior, R.F.V.; Varandas, S.; Fernandes, L.S.; Pacheco, F.; Fernandes, L.F.S.; Pacheco, F. The role of environmental land use conflicts in soil fertility: A study on the Uberaba River basin, Brazil. Sci. Total. Environ. 2016, 562, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.; Fernandes, L.F.S.; Pacheco, F. Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water. Sci. Total. Environ. 2016, 548, 173–188. [Google Scholar] [CrossRef]
- Pacheco, F.; Santos, R.; Fernandes, L.S.; Pereira, M.; Cortes, R.; Fernandes, L.F.S.; Pereira, M. Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal. Sci. Total. Environ. 2015, 537, 421–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. Water resources planning for a river basin with recurrent wildfires. Sci. Total Environ. 2015, 526, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Fernandes, L.F.S.; Pereira, M.; Cortes, R.; Pacheco, F. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. Sci. Total. Environ. 2015, 536, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.; Fernandes, L.S.; Fontainhas-Fernandes, A.; Monteiro, S.M.; Pacheco, F.; Fernandes, L.F.S.; Pacheco, F. From catchment to fish: Impact of anthropogenic pressures on gill histopathology. Sci. Total. Environ. 2016, 550, 972–986. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Brosse, S.; Chen, Y.; Lek, S.; Chang, J. Effects of damming on population sustainability of Chinese sturgeon, Acipenser sinensis: Evaluation of optimal conservation measures. Environ. Boil. Fishes 2009, 86, 325–336. [Google Scholar] [CrossRef]
- Thompson, L.C.; Young, P.S.; Cech, J.J. Hydropower-related pulsed-flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs. Rev. Fish Boil. Fish. 2011, 21, 713–731. [Google Scholar]
- Zhang, G.; Wu, L.; Li, H.; Liu, M.; Cheng, F.; Murphy, B.R.; Xie, S. Preliminary evidence of delayed spawning and suppressed larval growth and condition of the major carps in the Yangtze River below the Three Gorges Dam. Environ. Biol. Fishes 2012, 93, 439–447. [Google Scholar] [CrossRef]
- Santos, R.B.; Fernandes, L.F.S.; Moura, J.; Pereira, M.; Pacheco, F. The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. J. Hydrol. 2014, 519, 1297–1314. [Google Scholar] [CrossRef]
- Santos, R.B.; Fernandes, L.F.S.; Varandas, S.; Pereira, M.; Sousa, R.; Teixeira, A.; Lopes-Lima, M.; Cortes, R.; Pacheco, F. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci. Total. Environ. 2015, 511, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir. Sci. Total Environ. 2017, 31, 110–119.
- Pan, B.; Yuan, J.; Zhang, X.; Wang, Z.; Chen, J.; Lu, J.; Yang, W.; Li, Z.; Zhao, N.; Xu, M. A review of ecological restoration techniques in fluvial rivers. Int. J. Sediment Res. 2016, 31, 110–119. [Google Scholar] [CrossRef]
- Fernandes, L.F.S.; Maia, R.; Pinto, A. Monitoring Methodology of Interventions for Riverbanks Stabilization: Assessment of Technical Solutions Performance. Resour. Manag. 2016, 30, 5281–5298. [Google Scholar]
- Pinto, A.A.S.; Fernandes, L.F.S.; de Oliveira Maia, R.J.F. A method for selecting suitable technical solutions to support sustainable riverbank stabilisation. Area 2018. [Google Scholar] [CrossRef]
- Doyle, M.W.; Stanley, E.H.; Havlick, D.G.; Kaiser, M.J.; Steinbach, G.; Graf, W.L.; Galloway, G.E.; Riggsbee, J.A. Aging infrastructure and ecosystem restoration. Science 2008, 319, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Terêncio, D.; Fernandes, L.S.; Cortes, R.; Pacheco, F.; Fernandes, L.F.S.; Pacheco, F. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J. Hydrol. 2017, 550, 318–330. [Google Scholar] [CrossRef]
- Terêncio, D.; Fernandes, L.S.; Cortes, R.; Moura, J.; Pacheco, F.; Pacheco, F. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. Sci. Total. Environ. 2018, 613, 1079–1092. [Google Scholar] [CrossRef]
- Hart, D.D.; Johnson, T.E.; Bushaw-Newton, K.L.; Horwitz, R.J.; Bednarek, A.T.; Charles, D.F.; Kreeger, D.A.; Velinsky, D.J. Dam Removal: Challenges and Opportunities for Ecological Research and River Restoration. Bioscience 2002, 52, 669–682. [Google Scholar] [CrossRef] [Green Version]
- Roni, P.; Beechie, T.J.; Bilby, R.E.; Leonetti, F.E.; Pollock, M.M.; Pess, G.R. A Review of Stream Restoration Techniques and a Hierarchical Strategy for Prioritizing Restoration in Pacific Northwest Watersheds. Am. J. Fish. Manag. 2002, 22, 1–20. [Google Scholar] [CrossRef]
- Erős, T.; Grant, E.H.C. Unifying research on the fragmentation of terrestrial and aquatic habitats: Patches, connectivity and the matrix in riverscapes. Freshw. Boil. 2015, 60, 1487–1501. [Google Scholar] [CrossRef]
- Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal. Ecol. Eng. 2007, 30, 215–230. [Google Scholar] [CrossRef]
- Tonra, C.M.; Sager-Fradkin, K.; Morley, S.A.; Duda, J.J.; Marra, P.P. The rapid return of marine-derived nutrients to a freshwater food web following dam removal. Boil. Conserv. 2015, 192, 130–134. [Google Scholar] [CrossRef]
- Battle, L.; Chang, H.-Y.; Tzeng, C.-S.; Lin, H.-J. The impact of dam removal and climate change on the abundance of the Formosan landlocked salmon. Ecol. Model. 2016, 339, 23–32. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Larsen, M.H.; Nielsen, J.; Aarestrup, K. 30 years of data reveal dramatic increase in abundance of brown trout following the removal of a small hydrodam. J. Environ. Manag. 2017, 204, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, M.W.; Stanley, E.H.; Orr, C.H.; Selle, A.R.; Sethi, S.A.; Harbor, J.M.; Harbor, J. Stream ecosystem response to small dam removal: Lessons from the Heartland. Geomorphology 2005, 71, 227–244. [Google Scholar] [CrossRef]
- Lorang, M.S.; Aggett, G. Potential sedimentation impacts related to dam removal: Icicle Creek, Washington, U.S.A. Geomorphology 2005, 71, 182–201. [Google Scholar] [CrossRef]
- Wildman, L.A.; MacBroom, J.G. The evolution of gravel bed channels after dam removal: Case study of the Anaconda and Union City Dam removals. Geomorphology 2005, 71, 245–262. [Google Scholar] [CrossRef]
- Konrad, C.P. Simulating the recovery of suspended sediment transport and river-bed stability in response to dam removal on the Elwha River, Washington. Ecol. Eng. 2009, 35, 1104–1115. [Google Scholar] [CrossRef]
- Schmitz, D.; Blank, M.; Ammondt, S.; Patten, D.T. Using historic aerial photography and paleohydrologic techniques to assess long-term ecological response to two Montana dam removals. J. Environ. Manag. 2009, 90, S237–S248. [Google Scholar] [CrossRef]
- Sawaske, S.R.; Freyberg, D.L. A comparison of past small dam removals in highly sediment-impacted systems in the U.S. Geomorphology 2012, 151, 50–58. [Google Scholar] [CrossRef]
- Gartner, J.D.; Magilligan, F.J.; Renshaw, C.E. Predicting the type, location and magnitude of geomorphic responses to dam removal: Role of hydrologic and geomorphic constraints. Geomorphology 2015, 251, 20–30. [Google Scholar] [CrossRef]
- Magilligan, F.; Nislow, K.; Kynard, B.; Hackman, A. Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment. Geomorphology 2016, 252, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, L.; Mitsch, W.J. Predicting river aquatic productivity and dissolved oxygen before and after dam removal. Ecol. Eng. 2014, 72, 125–137. [Google Scholar] [CrossRef]
- Null, S.E.; Medellín-Azuara, J.; Escriva-Bou, A.; Lent, M.; Lund, J.R. Optimizing the dammed: Water supply losses and fish habitat gains from dam removal in California. J. Environ. Manag. 2014, 136, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Agoramoorthy, G. The future of India’s obsolete dams: Time to review their safety and structural integrity. Futures 2015, 67, 22–25. [Google Scholar] [CrossRef]
- East, A.E.; Pess, G.R.; Bountry, J.A.; Magirl, C.S.; Ritchie, A.C.; Logan, J.B.; Randle, T.J.; Mastin, M.C.; Minear, J.T.; Duda, J.J.; et al. Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology 2015, 246, 687–708. [Google Scholar] [CrossRef]
- Warrick, J.A.; Bountry, J.A.; East, A.E.; Magirl, C.S.; Randle, T.J.; Gelfenbaum, G.; Ritchie, A.C.; Pess, G.R.; Leung, V.; Duda, J.J. Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis. Geomorphology 2015, 246, 649–668. [Google Scholar] [CrossRef]
- Wyrick, J.R.; Rischman, B.A.; Burke, C.A.; McGee, C.; Williams, C. Using hydraulic modeling to address social impacts of small dam removals in southern New Jersey. J. Environ. Manag. 2009, 90, S270–S278. [Google Scholar] [CrossRef]
- Fox, C.A.; Magilligan, F.J.; Sneddon, C.S. “You kill the dam, you are killing a part of me”: Dam removal and the environmental politics of river restoration. Geoforum 2016, 70, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Beatty, S.; Allen, M.; Lymbery, A.; Jordaan, M.S.; Morgan, D.; Impson, D.; Marr, S.; Ebner, B.; Weyl, O.L. Rethinking refuges: Implications of climate change for dam busting. Boil. Conserv. 2017, 209, 188–195. [Google Scholar] [CrossRef]
- McKay, S.K.; Cooper, A.R.; Diebel, M.W.; Elkins, D.; Oldford, G.; Roghair, C.; Wieferich, D. Informing Watershed Connectivity Barrier Prioritization Decisions: A Synthesis. River Res. Appl. 2017, 33, 847–862. [Google Scholar] [CrossRef]
- Kuby, M.J.; Fagan, W.F.; Revelle, C.S.; Graf, W.L. A multiobjective optimization model for dam removal: An example trading off salmon passage with hydropower and water storage in the Willamette basin. Adv. Resour. 2005, 28, 845–855. [Google Scholar] [CrossRef]
- Hoenke, K.M.; Kumar, M.; Batt, L. A GIS based approach for prioritizing dams for potential removal. Ecol. Eng. 2014, 64, 27–36. [Google Scholar] [CrossRef]
- Junior, R.F.V.; Varandas, S.G.; Pacheco, F.A.; Pereira, V.R.; Santos, C.F.; Cortes, R.M.; Fernandes, L.F.S.; Junior, R.F.V.; Fernandes, L.F.S. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 2015, 43, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Fernandes, L.S.; Cortes, R.; Pacheco, F.; Fernandes, L.F.S.; Pacheco, F. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total. Environ. 2017, 583, 466–477. [Google Scholar] [CrossRef]
- Fernandes, L.S.; Fernandes, A.; Ferreira, A.; Cortes, R.; Pacheco, F. A partial least squares – Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Sci. Total. Environ. 2018, 626, 1069–1085. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L. Application of Correspondence Analysis in the Assessment of Groundwater Chemistry. Math. Geol. 1998, 30, 129–161. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Landin, P.M.B. Two-way regionalized classification of multivariate datasets and its application to the assessment of hydrodynamic dispersion. Math. Geol. 2005, 37, 393–417. [Google Scholar] [CrossRef]
- Bellu, A.; Fernandes, L.F.S.; Cortes, R.M.; Pacheco, F.A.; Fernandes, L.F.S. A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. J. Hydrol. 2016, 533, 567–580. [Google Scholar] [CrossRef]
- Pacheco, F.A.; Alencoão, A.M. Role of fractures in weathering of solid rocks: Narrowing the gap between laboratory and field weathering rates. J. Hydrol. 2006, 316, 248–265. [Google Scholar] [CrossRef]
- Pacheco, F.A.; Van Der Weijden, C.H. Weathering of plagioclase across variable flow and solute transport regimes. J. Hydrol. 2012, 420, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.A.; Van Der Weijden, C.H. Role of hydraulic diffusivity in the decrease of weathering rates over time. J. Hydrol. 2014, 512, 87–106. [Google Scholar] [CrossRef]
- Fernandes, L.F.S.; Marques, M.J.; Oliveira, P.C.; Moura, J.P. Decision support systems in water resources in the demarcated region of Douro—Case study in Pinhão river basin, Portugal. Water Environ. J. 2014, 28, 350–357. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Santos, C.; Pereira, A.; Moura, J. Model of management and decision support systems in the distribution of water for consumption: Case study in North Portugal. Eur. J. Environ. Civ. Eng. 2011, 15, 411–426. [Google Scholar] [CrossRef]
- Pacheco, F.A.; Szocs, T. “Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary. Appl. Geochem. 2006, 21, 614–631. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.A.; Van Der Weijden, C.H. Mineral weathering rates calculated from spring water data: A case study in an area with intensive agriculture, the Morais Massif, northeast Portugal. Appl. Geochem. 2002, 17, 583–603. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- O’Hanley, J.R.; Wright, J.; Diebel, M.; Fedora, M.A.; Soucy, C.L. Restoring stream habitat connectivity: A proposed method for prioritizing the removal of resident fish passage barriers. J. Environ. Manag. 2013, 125, 19–27. [Google Scholar] [CrossRef]
- Catalano, M.J.; Bozek, M.A.; Pellett, T.D. Effects of Dam Removal on Fish Assemblage Structure and Spatial Distributions in the Baraboo River, Wisconsin. Am. J. Fish. Manag. 2007, 27, 519–530. [Google Scholar] [CrossRef]
- Kanehl, P.D.; Lyons, J.; Nelson, J.E. Changes in the Habitat and Fish Community of the Milwaukee River, Wisconsin, Following Removal of the Woolen Mills Dam. N. Am. J. Fish. Manag. 2004, 17, 387–400. [Google Scholar] [CrossRef]
- Poulos, H.M.; Miller, K.E.; Kraczkowski, M.L.; Welchel, A.W.; Heineman, R.; Chernoff, B. Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA. Environ. Manag. 2014, 54, 1090–1101. [Google Scholar] [CrossRef]
- Hogg, R.S.; Coghlan, S.M.; Zydlewski, J.; Gardner, C. Fish Community Response to a Small-Stream Dam Removal in a Maine Coastal River Tributary. Trans. Am. Fish. Soc. 2015, 144, 467–479. [Google Scholar] [CrossRef]
- Ding, C.; Jiang, X.; Wang, L.; Fan, H.; Chen, L.; Hu, J.; Wang, H.; Chen, Y.; Shi, X.; Chen, H.; et al. Fish Assemblage Responses to a Low-head Dam Removal in the Lancang River. Chin. Geogr. Sci. 2019, 29, 26–36. [Google Scholar] [CrossRef]
- Milardi, M.; Lanzoni, M.; Gavioli, A.; Fano, E.A.; Castaldelli, G. Long-term fish monitoring underlines a rising tide of temperature tolerant, rheophilic, benthivore and generalist exotics, irrespective of hydrological conditions. J. Limnol. 2018, 77. [Google Scholar] [CrossRef] [Green Version]
- Milardi, M.; Aschonitis, V.; Gavioli, A.; Lanzoni, M.; Fano, E.A.; Castaldelli, G. Run to the hills: Exotic fish invasions and water quality degradation drive native fish to higher altitudes. Sci. Total. Environ. 2018, 624, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Gavioli, A.; Mancini, M.; Milardi, M.; Aschonitis, V.; Racchetti, E.; Viaroli, P.; Castaldelli, G. Exotic species, rather than low flow, negatively affect native fish in the Oglio River, Northern Italy. Res. Appl. 2018, 34, 887–897. [Google Scholar] [CrossRef]
- Wagner, T.; Congleton, J.L.; Marsh, D.M. Smolt-to-adult return rates of juvenile chinook salmon transported through the Snake-Columbia River hydropower system, USA, in relation to densities of co-transported juvenile steelhead. Fish. Res. 2004, 68, 259–270. [Google Scholar] [CrossRef]
- Bolonina, A.; Comoglio, C.; Calles, O.; Kunickis, M. Strategies for Mitigating the Impact of Hydropower Plants on the Stocks of Diadromous Species in the Daugava River. Energy Procedia 2016, 95, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Turnpenny, A.W.H.; Lambert, D.R.; Nedwell, J.R.; Parmentier, A.; Ollevier, F. Field evaluation of a sound system to reduce estuarine fish intake rates at a power plant cooling water inlet. J. Fish Boil. 2004, 64, 938–946. [Google Scholar] [CrossRef]
- Bourne, C.M.; Kehler, D.G.; Wiersma, Y.F.; Cote, D. Barriers to fish passage and barriers to fish passage assessments: The impact of assessment methods and assumptions on barrier identification and quantification of watershed connectivity. Aquat. Ecol. 2011, 45, 389–403. [Google Scholar] [CrossRef]
- Huang, W.; Yano, S.; Zhang, J.; Wang, Y. Application of analytic hierarchy process in selecting a biological indicator for a river flow restoration. Ecol. Indic. 2013, 25, 180–183. [Google Scholar] [CrossRef]
- Comino, E.; Bottero, M.; Pomarico, S.; Rosso, M. The combined use of Spatial Multicriteria Evaluation and stakeholders analysis for supporting the ecological planning of a river basin. Land Use Policy 2016, 58, 183–195. [Google Scholar] [CrossRef]
- Junior, R.V.; Varandas, S.; Fernandes, L.S.; Pacheco, F.; Junior, R.F.V.; Fernandes, L.F.S.; Pacheco, F. Multi Criteria Analysis for the monitoring of aquifer vulnerability: A scientific tool in environmental policy. Environ. Sci. 2015, 48, 250–264. [Google Scholar] [Green Version]
Type of Structures | Permeability Value (p) |
---|---|
No barrier | 1 |
Barrier with fish way | 0.9 |
Barrier without reservoir | 0.7 |
Barrier with reservoir (not visible in the cartography) | 0.5 |
Barrier with reservoir (visible in the cartography) | 0.3 |
Sub-basin | dPC Connector Class | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
0–5.75 | 5.75–11.5 | 11.5–17.25 | 17.25–23.0 | 23.0–28.75 | 28.75–34.5 | 34.5–40.25 | 40.25–47.0 | ||
Extremely Low | Very Low | Low | Moderately Low | Moderately High | High | Very High | Extremely High | ||
Tâmega | 423 | 38 | 7 | 0 | 0 | 0 | 0 | 0 | 468 |
Sabor | 554 | 27 | 16 | 6 | 5 | 8 | 8 | 7 | 631 |
Côa | 246 | 39 | 6 | 4 | 6 | 4 | 0 | 0 | 305 |
Corgo | 57 | 18 | 9 | 8 | 1 | 0 | 0 | 0 | 93 |
Sub-basin | Link Improvement Class | Total | ||||
---|---|---|---|---|---|---|
0 to −2.4 | −2.4 to −4.8 | −4.8 to −7.2 | −7.2 to −9.6 | −9.6 to −12.0 | ||
Very Low | Low | Moderate | High | Very High | ||
Tâmega | 72 | 9 | 2 | 0 | 0 | 83 |
Sabor | 43 | 2 | 1 | 0 | 2 | 48 |
Côa | 27 | 6 | 1 | 0 | 1 | 35 |
Corgo | 5 | 5 | 4 | 4 | 0 | 18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes, R.M.V.; Peredo, A.; Terêncio, D.P.S.; Sanches Fernandes, L.F.; Moura, J.P.; Jesus, J.J.B.; Magalhães, M.P.M.; Ferreira, P.J.S.; Pacheco, F.A.L. Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal. Water 2019, 11, 693. https://doi.org/10.3390/w11040693
Cortes RMV, Peredo A, Terêncio DPS, Sanches Fernandes LF, Moura JP, Jesus JJB, Magalhães MPM, Ferreira PJS, Pacheco FAL. Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal. Water. 2019; 11(4):693. https://doi.org/10.3390/w11040693
Chicago/Turabian StyleCortes, Rui M.V., Andrés Peredo, Daniela P.S. Terêncio, Luís Filipe Sanches Fernandes, João Paulo Moura, Joaquim J.B. Jesus, Marco P.M. Magalhães, Pedro J.S. Ferreira, and Fernando A.L. Pacheco. 2019. "Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal" Water 11, no. 4: 693. https://doi.org/10.3390/w11040693
APA StyleCortes, R. M. V., Peredo, A., Terêncio, D. P. S., Sanches Fernandes, L. F., Moura, J. P., Jesus, J. J. B., Magalhães, M. P. M., Ferreira, P. J. S., & Pacheco, F. A. L. (2019). Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal. Water, 11(4), 693. https://doi.org/10.3390/w11040693