Performance of Conservation Techniques for Semiarid Environments: Field Observations with Caatinga, Mulch, and Cactus Forage Palma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Climate Data
2.3. Data Processing
2.4. Water and Sediment Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Rainfall Event Analyses
3.2. Runoff and Soil Loss Correlations
3.3. Aspects Related to Granulometry
4. Conclusions
- -
- Mulch was more efficient as a soil conservation technique than Cactus Palma, although Palma significantly increased soil moisture compared to bare soil.
- -
- Natural Cover (Caatinga) yielded less mulch runoff and sediment loss when compared to bare soil and to soil conservation practices (Mulch and Palma).
- -
- Rainfall intensity was the single most important factor in runoff generation and soil losses.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial–temporal variability. J. Hydrol. 2012, 39, 422–423. [Google Scholar] [CrossRef]
- Serengil, Y.; Gökbulak, F.; Özhan, S.; Hızal, A.; Şengönül, K.; Nihat, B.A.; Özyuvac, N. Hydrological impacts of a slight thinning treatment in a deciduous forest ecosystem in Turkey. J. Hydrol. 2007, 333, 569–577. [Google Scholar] [CrossRef]
- Alkharabsheh, M.M.; Alexandridis, T.K.; Bilasb, G.; Misopolinos, N. Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Four decades of progress in monitoring and modeling of processes in the soil-plant-atmosphere system: Applications and challenges. Procedia Environ. Sci. 2013, 19, 912–921. [Google Scholar] [CrossRef]
- Montenegro, A.A.A.; Abrantes, J.R.C.B.; de Lima, J.L.M.P.; Singh, V.P.; Santos, T.E.M. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena 2013, 109, 139–149. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.; Naderi, M.; Dematte, J.A.M. Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Reg. 2017, 11, 28–36. [Google Scholar] [CrossRef]
- Brasil, J.B.; Palácio, H.A.D.Q.; Araújo Neto, J.R.D.; Ribeiro Filho, J.C.; Andrade, E.M.D. Características das chuvas e interceptação vegetal no Bioma Caatinga. Irriga 2017, 22, 560–574. (In Portuguese) [Google Scholar] [CrossRef]
- Abrantes, J.R.C.B.; Prats, A.S.; Keizer, J.J.; de Lima, J.L.M.P. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Till. Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Ribeiro Filho, C.J.; Palácio, H.A.D.Q.; Andrade, E.M.D.; Santos, J.C.N.D.; Brasil, J.B. Rainfall characterization and sedimentological responses of watersheds with different land uses to precipitation in the Semiarid Region of Brazil. Rev. Caatinga 2017, 30, 468–478. [Google Scholar] [CrossRef]
- Qin, W.; Hu, C.; Oenema, O. Soil mulching significantly enhances yields and waterand nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 2015, 5, 162–170. [Google Scholar] [CrossRef]
- Pinheiro, K.M.; Silva, T.G.F.; Diniz, W.J.S.; Carvalho, H.F.S.; Moura, S.B. Indirect methods for determining the area index of forage cactus cladodes. Pes. Agrop. Tropical 2015, 45, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.E.M.; Silva, D.D.; Montenegro, A.A.A. Temporal variability of soil water content under different surface conditions in the semiarid region of the Pernambuco state. Rev. Bras. Ciên. do Solo 2010, 34, 1733–1741. [Google Scholar] [CrossRef] [Green Version]
- Holko, L.; Holzmann, H.; de Lima, M.I.P.; de Lima, J.L.M.P. Hydrological research in small catchments—An approach to improve knowledge on hydrological processes and global change impacts. J. Hydrol. Hydromech. 2015, 63, 181–182. [Google Scholar] [CrossRef]
- Prats, S.A.; Abrantes, J.R.C.B.; Coelho, C.O.A.; Keizer, J.J.; de Lima, J.L.M.P. Comparing topsoil charcoal, ash, and stone cover effects on the postfire hydrologic and erosive response under laboratory conditions. Land Degrad. Dev. 2018, 18, 1–10. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, X.; Luo, Y.; Cai, M. The Effects of Litter Layer and Topsoil on Surface Runoff during Simulated Rainfall in Guizhou Province, China: A Plot Scale Case Study. Water 2018, 10, 915. [Google Scholar] [CrossRef]
- Phan-Ha, H.A.; Huon, S.; Tureaux, T.H.; Orange, D.; Jouquet, P.; Valentin, C.; de Rouw, A.; Duc, T. Impact of fodder cover on runoff and soil erosion at plot scale in a cultivated catchment of North Vietnam. Geoderma 2012, 8, 177–178. [Google Scholar] [CrossRef]
- Santos, T.E.M.; Montenegro, A.A.A. Erosivity and rainfall hydrological patterns in the Pernambuco Central “Agreste”. Rev. Bras. de Eng. Agrí. e Amb. 2012, 16, 871–880. (In Portuguese) [Google Scholar] [CrossRef]
- Wenninger, J.; Uhlenbrook, S.; Lorentz, S.; Leibundgut, C. Identification of runoff generation processes using combined hydrometric, tracer and geophysical methods in a headwater catchment in South Africa. Hydrol. Sci. J. 2008, 53, 65–80. [Google Scholar] [CrossRef]
- Silva, B.M.; Montenegro, S.M.G.L.; Silva, F.B.D.; Araújo Filho, P.F.D.A. Chuvas Intensas em Localidades do Estado de Pernambuco. Braz. J. Water Res. 2012, 17, 135–147. (In Portuguese) [Google Scholar] [CrossRef]
- Santos, J.C.N.; Andrade, E.M.; Guerreiro, M.J.S.; Medeiros, P.H.A.; Palácio, H.A.Q.; Araújo Neto, J.R. Effect of dry spells and soil cracking on runoff generation in a semiarid micro watershed under land use change. J. Hydrol. 2016, 541, 1–10. [Google Scholar] [CrossRef]
- Silva, J.R.L.; Montenegro, A.A.A.; Monteiro, A.L.N.; Silva Júnior, V.P. Modelagem da dinâmica de umidade do solo em diferentes condições de cobertura no semiárido pernambucano. Rev. Bras. de Ciên. Agrárias 2015, 10, 293–303. (In Portuguese) [Google Scholar] [CrossRef]
- Montenegro, A.A.A.; Montenegro, S.M.G.L. Variabilidade espacial de classes de textura, salinidade e condutividade hidráulica de solos em planície aluvial. Rev. Bras. de Eng. Agrí. e Amb. 2006, 10, 30–37. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análises de Solos; EMBRAPA: Rio de Janeiro, Brazil, 2011; 230p. (In Portuguese) [Google Scholar]
- Lopes, I.; Leal, B.G.; Ramos, C.M.C.; Melo, J.M.M. Espacialização da precipitação para a região do Submédio São Francisco. Rev. Bras. de Agri. Irr. 2016, 10, 893–903. (In Portuguese) [Google Scholar] [CrossRef]
- Araújo, D.C.S.; Montenegro, S.M.G.L.; Montenegro, A.A.A.; Silva Júnior, V.P.; Santos, S.M. Spatial variability of soil attributes in an experimental basin in the semi-arid region of Pernambuco, Brazil. Rev. Bras. de Eng. Agrí. e Amb. 2018, 22, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, J.M.; Moura, G.B.A.; Silva, B.B.; Lopes, P.M.O.; Silva, Ê.F.F. Biophysical parameters from remote sensing in semiarid region of Rio Grande do Norte state, Brazil. Rev. Bras. de Eng. Agrí. e Amb. 2014, 18, 73–84. [Google Scholar] [CrossRef]
- Caloiero, T.; Biondo, C.; Callegari, G.; Collalti, A.; Froio, R.; Maesano, M.; Matteucci, G.; Pellicone, G.; Veltri, A. Results of a long-term study on an experimental watershed in southern Italy. Forum Geografic 2016, 15, 55–65. [Google Scholar] [CrossRef]
- McLaughlin, D.L.; Kaplan, D.A.; Cohen, M.J. Managing Forests for Increased Regional Water Yield in the Southeastern U.S. Coastal Plain. J. Am. Water Resour. Assoc. 2013, 49, 953–965. [Google Scholar] [CrossRef]
- Kiani-Harchegani, M.; Sadeghi, S.H.; Asadi, H. Comparing grain size distribution of sediment and original soil under raindrop detachment and raindrop-induced and flow transport mechanism. Hydrol. Sci. J. 2017, 63, 312–323. [Google Scholar] [CrossRef]
- Silveira, A.; Júnior, J.A.P.; Poleto, C.; de Lima, J.L.M.P.; Gonçalves, F.A.; Alvarenga, L.A.; Isidoro, J.M.P.G. Assessment of loose and adhered urban street sediments and trace metals: A study in the city of Poços de Caldas, Brazil. J. Soils Sed. 2016, 16, 2640–2650. [Google Scholar] [CrossRef]
- Bashari, M.; Moradi, H.R.; Kheirkhah, M.M.; Jafari-Khaledi, M. Temporal variations of runoff and sediment in different soil clay contents using simulated conditions. Soil Water Res. 2013, 8, 124–132. [Google Scholar] [CrossRef]
- De Lima, J.L.M.P.; Souza, C.S.; Singh, V.P. Granulometric characterization of sediments transported by surface runoff generated by moving storms. Nonlinear Proc. Geoph. 2008, 15, 999–1011. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.S.; Dobre, M.; Elliot, W.J.; Wu, J.Q.; Boll, J. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin. J. Hydrol. 2016, 533, 389–402. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water. Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
Depth | Hor. | Sand | Clay | Silt | Dp | Ds | P | pH | Ca2+ | Mg2+ | K+ | Na+ | H+Al | OC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | % | g cm−3 | % | cmolc kg−1 | g kg−1 | |||||||||
0.00–0.12 | Ap | 44.9 | 23.2 | 32.0 | 2.64 | 1.48 | 43.9 | 6.07 | 2.08 | 0.65 | 0.43 | 0.27 | 2.39 | 20.80 |
0.13–0.27 | A1 | 44.2 | 26.5 | 29.3 | 2.72 | 1.51 | 44.5 | 5.20 | 1.57 | 0.41 | 0.16 | 0.24 | 2.15 | 15.70 |
0.28–0.46 | A2 | 31.5 | 32.5 | 36.0 | 2.64 | 1.45 | 45.1 | 5.43 | 0.81 | 0.29 | 0.18 | 0.23 | 2.12 | 8.10 |
0.47–0.69 | AB | 28.9 | 33.8 | 37.3 | 2.67 | 1.68 | 37.1 | 5.47 | 0.73 | 0.36 | 0.21 | 0.30 | 1.71 | 7.30 |
0.70–0.86 | Bt | 15.2 | 69.2 | 29.3 | 2.66 | 1.88 | 29.3 | 6.10 | 1.44 | 1.32 | 0.10 | 1.58 | 1.43 | 14.40 |
Site | Soil | Slope | Exposition | Position of Plots (from Left to Right) | |
---|---|---|---|---|---|
Malaquias | Red Yellow Argisol | ~6% | Northwest | m; p; b; n | |
Edivaldo | Northwest | b; n; p; m | |||
João | Northeast | m; b; p; n | |||
Site | Maximum/Mean total rainfall (mm) | Maximum/Mean rainfall intensity in 30 min (mm h−1) | Mean soil losses (kg) | Mean Runoff (mm) | Soil moisture (m3 m−3) |
Malaquias | 60/31 | 48/24.5 | n- 0.03 (c); | 0.6 (d); | 0.16 (a); |
b- 1.91 (a); | 5.9 (a); | 0.11 (d); | |||
m- 0.06 (c); | 1.5 (c); | 0.15 (b); | |||
p- 0.28 (b) | 2.5 (b) | 0.13 (c) | |||
Edivaldo | 70/26 | 90/33.6 | n- 0.03 (c); | 0.6 (d); | 0.08 (a); |
b- 3.31 (a); | 5.4 (a); | 0.06 (c); | |||
m- 0.26 (c); | 1.3 (c); | 0.07 (b); | |||
p- 1.03 (b) | 2.5 (b) | 0.06 (c) | |||
João | 48/28 | 60/24.4 | n- 0.04 (c); | 0.6 (d); | 0.16 (a); |
b- 1.56 (a); | 3.0 (a); | 0.08 (d); | |||
m- 0.18 (c); | 0.9 (c); | 0.14 (b); | |||
p- 0.63 (b) | 1.5 (b) | 0.12 (c) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, I.; Montenegro, A.A.A.; de Lima, J.L.M.P. Performance of Conservation Techniques for Semiarid Environments: Field Observations with Caatinga, Mulch, and Cactus Forage Palma. Water 2019, 11, 792. https://doi.org/10.3390/w11040792
Lopes I, Montenegro AAA, de Lima JLMP. Performance of Conservation Techniques for Semiarid Environments: Field Observations with Caatinga, Mulch, and Cactus Forage Palma. Water. 2019; 11(4):792. https://doi.org/10.3390/w11040792
Chicago/Turabian StyleLopes, Iug, Abelardo A. A. Montenegro, and João L. M. P. de Lima. 2019. "Performance of Conservation Techniques for Semiarid Environments: Field Observations with Caatinga, Mulch, and Cactus Forage Palma" Water 11, no. 4: 792. https://doi.org/10.3390/w11040792
APA StyleLopes, I., Montenegro, A. A. A., & de Lima, J. L. M. P. (2019). Performance of Conservation Techniques for Semiarid Environments: Field Observations with Caatinga, Mulch, and Cactus Forage Palma. Water, 11(4), 792. https://doi.org/10.3390/w11040792