The Significance of Groundwater Flow Modeling Study for Simulation of Opencast Mine Dewatering, Flooding, and the Environmental Impact
Abstract
:1. Introduction
2. Application of Numerical Modeling in Mining Hydrogeology
- Stage of identification, documentation, and opening up of the deposit: Assessment of hydrogeological conditions of the deposit area, mine water inflow calculation, suggestion on dewatering technology, determination of the cone of depression and its boundaries, impact assessment on surface water (watercourses and reservoirs) and groundwater in each dewatering layer, determination of the area of environmental impact of mining, and indication the necessary measures to minimize the negative impact on the environment.
- Stage of deposit exploitation: Forecasting the mine water inflow intensity and the change of groundwater level resulting in changes of geotechnical conditions of slopes in time and space as the mine develops, as well as determining impacts on the environment based on real data gathered during previous dewatering.
- Stage of mine decommissioning: An indication of a rational way of flooding and management the post-mining void, determination of time span for filling an excavation with water, final water level in the post-mining reservoir, and the forecasting of quantitative and qualitative changes in the reservoir and its environment during and after flooding.
3. Specificity of Application the Modeling Methods for Opencast Mining
3.1. Groundwater Flow System Representation
3.2. Simulation of Opencast Mine Dewatering System
3.3. Simulation of Post Mining Voids Flooding
3.4. Model Calibration and Verification
- Hydro-structural system and aquifers transmissivity,
- specific yield and storage capacity of aquifers,
- changes in the leakage of water through semi-permeable layers,
- recharge of aquifers and its changes due to fluctuations in the groundwater table,
- sections of watercourses with decreasing or increasing flow.
3.5. Documenting of Modeling Study for the Mining Area
4. Problem of Aquifer Drying/Rewetting and its Representation in the Model
5. Use of Modeling Methods in Polish Opencast Mines
6. Limitations of Modeling Methods
7. Conclusions
Funding
Conflicts of Interest
References
- Szczepiński, J. The significance of ground water flow modeling study for simulation of open cast mine dewatering and assessing the environmental impact of drainage. In Proceedings Internatnal Mine Water Association Symposium, Leipzig, Germany, 11–15 July 2016; Drebenstedt, C., Michael, P., Eds.; TU Bergakademie Freiberg: Freiberg, Germany, 2016; pp. 508–511. [Google Scholar]
- Papadopulos, I.S.; Cooper, H.H. Drawdown in a well of large diameter. Water Resour. Res. 1967, 3, 241–244. [Google Scholar] [CrossRef]
- Marinelli, F.; Niccoli, W.L. Simple analytical equations for estimating ground water inflow to a mine pit. Groundwater 2000, 38, 311–314. [Google Scholar] [CrossRef]
- Hanna, T.M.; Elfadil, A.A.; Atkinson, L.C. Use of analytical solution for preliminary estimates of ground water inflow to a pit. Min. Eng. 1994, 46, 149–152. [Google Scholar]
- Powers, J.P.; Corwin, A.B.; Schmall, P.C.; Kaeck, W.E. Construction Dewatering and Groundwater Control. New Methods and Applications, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2007; pp. 1–638. ISBN 978-0-471-47943-7. [Google Scholar]
- Schwartz, F.W.; Crowe, A.S. Simulation of changes in ground-water levels associated with strip mining. Geol. Soc. Am. Bull. 1985, 96, 253–262. [Google Scholar] [CrossRef]
- Atkinson, L.C.; Keeping, P.G.; Wright, J.C.; Liu, H. The challenges of dewatering at the victor diamond mine in Northern Ontario, Canada. Mine Water Environ. 2010, 29, 99–107. [Google Scholar] [CrossRef]
- Charou, E.; Stefouli, M.; Dimitrakopoulos, E.; Vasiliou, E.; Mavrantza, O.D. Using remote sensing to assess impact of mining activities on land and water resources. Mine Water Environ. 2010, 29, 45–52. [Google Scholar] [CrossRef]
- Rapantova, N.; Grmela, A.; Vojtek, D.; Halir, J.; Bedrich, M. Ground water flow modeling applications in mining hydrogeology. Mine Water Environ. 2007, 26, 264–270. [Google Scholar] [CrossRef]
- Banks, D. A variable volume, head dependent mine water filling model. Ground Water 2001, 39, 362–365. [Google Scholar] [CrossRef]
- Bair, E.S.; Parizek, R.R. Numerical simulation of potentiometric surface changes caused by a proposed open-pit anthracite mine. Ground Water 1981, 19, 190–200. [Google Scholar] [CrossRef]
- Bair, E.S.; O’Donnell, T.P. Uses of numerical modeling in the design and licensing of dewatering and depressurizing systems. Ground Water 1983, 21, 411–420. [Google Scholar] [CrossRef]
- Castro, M.; Moore, J.N. Pit lakes, their characteristics and the potential for their remediation. Environ. Geol. 2000, 39, 1254–1260. [Google Scholar] [CrossRef]
- Keqiang, H.; Dong, G.; Xianwei, W. Mechanism of the water invasion of Gaoyang iron mine, China and its impacts on the mine groundwater environment. Environ. Geol. 2006, 49, 1163–1172. [Google Scholar] [CrossRef]
- Vukelič, Ž.; Dervarič, E.; Šporin, J.; Vižintin, G. The development of dewatering predictions of the Velenje coalmine. Energies 2016, 9, 702. [Google Scholar] [CrossRef]
- Younger, P.L.; Banwart, S.A.; Hedin, R.S. Mine Water Hydrology, Pollution, Remediation, 1st ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 1–442. ISBN 1-4020-0137-1. [Google Scholar]
- Wolkersdorfer, C. Water Management at Abandoned Underground Flooded Mines. Fundamentals, Tracer Tests. Modeling, Water Treatment, 1st ed.; Springer: Berlin, Germany, 2008; pp. 1–465. ISBN 978-3-540-77330-6. [Google Scholar]
- Castendyk, D.N.; Eary, L.E. Mine Pit Lakes: Characteristics, Predictive Modeling and Sustainability (Management Technologies for Metal Mining Influenced Water, 1st ed.; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 2009; Volume 3, pp. 1–304. ISBN 978-0-87335-305-2. [Google Scholar]
- Geller, W.; Schultze, M.; Kleinman, R.; Wolkersdorfer, C. Acidic Pit Lakes. The Legacy of Coal and Metal Surface Mine, 1st ed.; Springer: Berlin, Germany, 2013; pp. 1–525. ISBN 978-3-642-29383-2. [Google Scholar]
- Remson, I.; Appel, C.A.; Webster, R.A. Groundwater models solved by digital computers. J. Hydraul. Div. Am. Soc. Civ. Eng. 1965, 91, 133–147. [Google Scholar]
- Pinder, G.F.; Bredehoeft, J.D. Application of the digital computer for aquifer evaluation. Water Resour. Res. 1968, 4, 1069–1093. [Google Scholar] [CrossRef]
- Prickett, T.A.; Longuist, C.G. Selected digital computer techniques for groundwater resources evaluation. Ill. State Water Surv. 1971, 55, 1–67. [Google Scholar]
- Trescott, P.C.; Larson, S.P. Documentation of Finite-Difference Model for Simulation of Three—Dimensional Ground-Water Flow; Open File Report 75–438; U.S. Department of the Interior: Washington, DC, USA, 1976; pp. 1–21.
- Bredehoeft, J. Modeling groundwater flow—The beginnings. Groundwater 2012, 50, 325–329. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite Difference Ground-Water Flow Model; Open File Report 83–875; U.S. Department of the Interior: Washington, DC, USA, 1984; pp. 1–528.
- McDonald, M.G.; Harbaugh, A.W. The history of modflow. Groundwater 2003, 41, 280–283. [Google Scholar] [CrossRef]
- Diersch, H.J.G. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, 1st ed.; Springer: Berlin, Germany, 2014; pp. 1–808. ISBN 978-3-642-38738-8. [Google Scholar]
- Anderson, M.P.; Woessner, W.W. Applied Groundwater Modeling, Groundwater Flow and Adjective Transport, 1st ed.; Academic Press Inc.: San Diego, CA, USA, 1992; pp. 1–381. ISBN 9781483999785. [Google Scholar]
- Spitz, K.; Moreno, J. A Practical Guide to Groundwater and Solute Transport Modeling, 1st ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1996; pp. 1–461. ISBN 0-471-13687-5. [Google Scholar]
- Ritchey, J.D.; Rumbaugh, J.O. Subsurface Fluid Flow (Ground-Water and Vadose Zone) Modeling, 1st ed.; ASTM Special Technical Publication 1288; ASTM: West Conshohocken, PA, USA, 1996; pp. 1–423. ISBN 0-8031-2021-4. [Google Scholar]
- Dąbrowski, S.; Kapuściński, J.; Nowicki, K.; Przybyłek, J.; Szczepański, A. Metodyka Modelowania Matematycznego w Badaniach i Obliczeniach Hydrogeologicznych, 1st ed.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2011; pp. 1–364. ISBN 978-83-62662-41-8. [Google Scholar]
- Martinez, C.; Ugorets, V. Use of numerical modeling for mine dewatering assessment. In Proceedings of the 2nd International Congress on Water Management in the Mining Industry, Santiago, Chile, 9–11 June 2010; pp. 317–326. [Google Scholar]
- Szczepiński, J. Modelowanie Numeryczne w Badaniach Hydrogeologicznych dla Oceny Wpływu Kopalń Odkrywkowych na Środowisko Wodne, 1st ed.; Wydz. Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej: Wrocław, Poland, 2013; pp. 1–200. ISBN 978-83-978-83-937788-0-5. [Google Scholar]
- Franke, O.L.; Reilly, T.E.; Bennett, G.D. Definition of Boundary and Initial Conditions in the Analysis of Saturated Ground-Water Flow Systems—An Introduction; U.S. Geological Survey: Reston, VA, USA, 1987; Chapter B5; pp. 1–15.
- Franke, O.L.; Reilly, T.E. The Effects of Boundary Conditions on the Steady-State Response of Three Hypothetical Ground-Water Systems—Result and Implications of Numerical Experiments; Paper 2315; U.S. Geological Survey: Reston, VA, USA, 1987; pp. 1–19.
- Reilly, T. System and Boundary Conceptualization in Ground-Water Flow Simulation; U.S. Geological Survey: Reston, VA, USA, 2001; Chapter B8; pp. 1–26.
- Reilly, T.E.; Harbaugh, A.W. Guidelines for Evaluating Ground-Water Flow Models. U.S. Geological Survey Scientific Investigations Report 2004–5038; 2004; pp. 1–30. Available online: https://pubs.usgs.gov/sir/2004/5038/PDF/SIR20045038_ver1.01.pdf (accessed on 2 June 2018).
- Healy, R. Estimating Groundwater Recharge, 1st ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 1–256. ISBN 978-0-521-86396-4. [Google Scholar]
- Rushton, K.R. Numerical and Conceptual Models for Recharge Estimation in Arid and Semi-Arid Zones; Simmers, I., Ed.; Reidel: Dordrecht, The Netherlands, 1988; pp. 223–238. [Google Scholar]
- De Vries, J.J.; Simmers, I. Groundwater recharge, an overwiew of processes and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- Sawicki, J. Zmiany Naturalnej Infiltracji Opadów do Warstw Wodonośnych pod Wpływem Głębokiego Drenażu Górniczego; Ofic. Wydaw. Politechniki Wrocławskiej: Wrocław, Poland, 2000; p. 174. ISBN 83-7085-475-3. [Google Scholar]
- Sanford, W. Recharge and groundwater models. Hydrogeol. J. 2002, 10, 110–120. [Google Scholar] [CrossRef]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; U.S. Geological Survey: Reston, VA, USA, 2000; pp. 1–121.
- Szczepiński, J. Predictive modeling of filling with water the Bełchatów lignite mine final excavations. In Proceedings of the 7th International Mine Water Congress, Katowice, Poland, 11–15 September 2000; Różkowski, A., Rogoż, M., Eds.; The IMWA and Uniwersytet Śląski: Katowice, Poland, 2000; pp. 331–341. [Google Scholar]
- Anderson, M.P.; Munter, J.A. Seasonal reversals of groundwater flow around lakes and the relevance to stagnation points and lake budgets. Water Resour. Res. 1980, 17, 1139–1150. [Google Scholar] [CrossRef]
- Morgan, D.S. Geohydrology and Numerical Model Analysis of Groundwater Flow in the Goose Lake Basin, Oregon and California; Report 00–4167; U.S. Geological Survey: Reston, VA, USA, 1988; pp. 1–101.
- Anderson, M.P.; Hunt, R.J.; Krohelski, J.T.; Chung, K. Using high hydraulic conductivity nodes to simulate seepage lakes. Groundwater 2002, 40, 117–122. [Google Scholar] [CrossRef]
- Hunt, R.J.; Krohelski, J.T. The application of the analytic element model to investigate groundwater-lake interactions at Pretty lake. Wis. J. Lake Reserv. Manag. 1996, 12, 487–495. [Google Scholar] [CrossRef]
- Lee, T.M. Hydrogeologic controls on the groundwater interactions with an acid lake in karst terrain, Lake Barco, Florida. Water Resour. Res. 1996, 32, 831–844. [Google Scholar] [CrossRef]
- Hunt, R.; Haitjema, H.M.; Krohelski, J.T.; Feinstein, D.T. Simulating ground water-lake interactions, approaches and insights. Groundwater 2003, 41, 227–237. [Google Scholar] [CrossRef]
- Szczepiński, J. Forecasting of groundwater table recovery after closure of the bełchatów lignite open cast mine. In Proceedings of the 8th International Mine Water Congress, Belo Horizonte, Brazil, 24–28 April 2001; pp. 1–6. [Google Scholar]
- Doherty, J. Improved calculations for dewatered cells in MODFLOW. Groundwater 2005, 39, 863–869. [Google Scholar] [CrossRef]
- HydroGeoLogic, Inc. MODFLOW-SURF (Version 1.2). The HydroGeoLogic Enhanced Version of the U.S. Geological Modular Groundwater Flow Model. Code Documentation Report. 1996. [Google Scholar]
- Szymanko, J. Zastosowanie modelowania matematycznego przy projektowaniu odwodnień wykopów metra na przykładzie wykopu stacji A-10. Przegląd Geol. 1987, 35, 375–380. [Google Scholar]
- Bocheńska, T.; Fiszer, J. Określenie Współczynnika Filtracji Cechszytyńskich Węglanów w-1 na Drodze Modelowania Cyfrowego z Wykorzystaniem Metody Elementów Skończonych Technika Poszukiwań. 1983; Volume 58, pp. 22–28. Available online: http://pph.psh.gov.pl/apex/pph.getfile?p_id=12228838331743 (accessed on 2 June 2018).
- Szczepiński, J.; Libicki, J. Modeling of the Bełchatów open-pit impact on the groundwater environment. In Proceedings of the International Mine Water Symposium, Sevilla, Spain, 13–17 September 1999; pp. 69–77. [Google Scholar]
- Szczepiński, J. Model odwadniania kopalni odkrywkowej węgla brunatnego „Bełchatów”. In Metodyka Modelowania Matematycznego w Badaniach i Obliczeniach Hydrogeologicznych, 1st ed.; Dąbrowski, S., Kapuściński, J., Nowicki, K., Przybyłek, J., Szczepański, A., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2011; pp. 244–262. ISBN 978-83-62662-41-8. [Google Scholar]
- Szczepiński, J. Modeling of the future “Piaski” open pit impact on the water environment. In Proceedings of the 10th Intern. Mine Water Congress, Karlove Vary, Czech Republic, 2–5 June 2008; Rapantowa, N., Hrkal, Z., Eds.; VSB-Technical University of Ostrava: Ostrava, Czech Republic, 2008; pp. 481–484. [Google Scholar]
- Szczepiński, J.; Straburzyńska-Janiszewska, R. Prognoza zasięgu leja depresji dla odkrywki węgla brunatnego Mąkoszyc-Grochowiska KWB „Konin” S.A. Biuletyn Pañstwowego Instytutu Geologicznego 2011, 445, 671–684. [Google Scholar]
- Libicki, J. Hydrogeological conditions of lignite basins in Poland and their changes cause by dewatering of open pits. In Proceedings of the International Mine Water Association Symposium, Katowice, Poland, 22 September 1987; pp. 525–535. [Google Scholar]
- Szczepiński, J.; Fiszer, J.; Stachowicz, Z.; Szczepanik, P. Reclamation of Polish lignite open pits by flooding. Biuletyn Pañstwowego Instytutu Geologicznego 2010, 441, 167–174. [Google Scholar]
- Martinez, C.; de la Hoz, K.; Pereira, C. Groundwater flow modeling applications in mining, scopes and limitations. In Proceedings of the 2nd International Congress on Water Management in the Mining Industry, Santiago, Chile, 9–11 June 2010; pp. 267–274. [Google Scholar]
- Konikow, L.F. Predictive accuracy of ground-water model—Lessons from a Postaudit. Ground Water 1986, 24, 173–184. [Google Scholar] [CrossRef]
- Andersen, P.F.; Lu, S. A post audit of a model-designed ground water extraction system. Ground Water 2003, 41, 212–218. [Google Scholar] [CrossRef] [PubMed]
Opencast Mines | Deposit Exploitation | Number of Voids 1 | Area (km2) | Volume (mln m3) |
---|---|---|---|---|
Adamów | 1964–2018 | 8 | 10.6 | 252 |
Konin | 1946–2030 | 10 | 21.8 | 664 |
Bełchatów | 1981–2038 | 2 | 32.5 | 2422 |
Turów | 1904–2040 | 1 | 17.0 | 1220 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepiński, J. The Significance of Groundwater Flow Modeling Study for Simulation of Opencast Mine Dewatering, Flooding, and the Environmental Impact. Water 2019, 11, 848. https://doi.org/10.3390/w11040848
Szczepiński J. The Significance of Groundwater Flow Modeling Study for Simulation of Opencast Mine Dewatering, Flooding, and the Environmental Impact. Water. 2019; 11(4):848. https://doi.org/10.3390/w11040848
Chicago/Turabian StyleSzczepiński, Jacek. 2019. "The Significance of Groundwater Flow Modeling Study for Simulation of Opencast Mine Dewatering, Flooding, and the Environmental Impact" Water 11, no. 4: 848. https://doi.org/10.3390/w11040848
APA StyleSzczepiński, J. (2019). The Significance of Groundwater Flow Modeling Study for Simulation of Opencast Mine Dewatering, Flooding, and the Environmental Impact. Water, 11(4), 848. https://doi.org/10.3390/w11040848