A Targeted Grouting and Water Blocking Method Based on Hydrological Tracer Testing and Its Engineering Applications
Abstract
:1. Introduction
2. A Targeted Grouting and Water Blocking Method for Depressed Mines Based on a Hydrological Tracer
2.1. Determining the Chloride Ion Selective Electrode Parameters
2.2. Identifying the Groundwater Connection Type
2.3. The Targeted Grouting Method
2.3.1. Grouting Material Optimization
2.3.2. Determining the Grouting Rate
2.3.3. Grouting Pressure Control
3. Field Testing and Engineering Applications
3.1. Tracer Test Drop Hole Layout
3.2. Analysis of the Hydrological Tracer Test Results
3.3. Setting the Targeted Grouting Parameters
3.3.1. Grouting Material Selection
3.3.2. Grouting Rate
3.3.3. Grouting Pressure
3.4. Field Test Implementation and Sealing Effect
Field Test Implementation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuang, J. Theoretical and Engineering Examples of Grouting; Science Press: Beijing, China, 2001. [Google Scholar]
- Li, S.; Liu, R.; Zhang, Q.; Zhang, X. Protection against water or mud inrush in tunnel by grouting: A review. J. Rock Mech. Geotech. Eng. 2016, 8, 753–766. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Bowell, R. Contemporary reviews of mine water studies in Europe. Mine Water Environ. 2004, 23, 161–173. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, M.; Wu, X. Investigations of groundwater bursting into mine seam floors from fault zones. Int. J. Rock Mech. Ming Sci. 2004, 414, 557–571. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, C.; Wu, C. Harmfulness and cause analysis of geolo-gical hazards in karst collapse. J. Road Southeast 2016, 3, 74–78. [Google Scholar]
- Wang, Y.; Shang, Y.; Yan, X.; Xu, X. Study on collapse mechanism in loose wall rock of shallow tunnel under rainfall. J. Harbin Inst. Technol. 2012, 2, 143–148. [Google Scholar]
- Yang, L.; Ling, R.; Li, Z.; Li, S. Influence of grout viscosity on the grouting reinforcement effect of completely weathered granite. China J. Highw. Transp. 2018, 10, 247–254. [Google Scholar]
- Yang, W.; Fang, Z.; Yang, X.; Shi, S.; Wang, J.; Wang, H.; Bu, L.; Li, L.; Zhou, Z.; Li, X. Experimental study of influence of karst aquifer on the law of water inrush in tunnels. Water 2018, 10, 1211. [Google Scholar] [CrossRef]
- Charlier, J.B.; Ladouche, B.; Maréchal, J.C. Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. J. Hydrol. 2015, 523, 610–623. [Google Scholar] [CrossRef]
- Duran, L.; Fournier, M.; Massei, N.; Dupont, J.-P. Assessing the nonlinearity of karst response function under variable boundary conditions. Ground Water. 2015, 54, 46–54. [Google Scholar] [CrossRef]
- Hartmann, A.; Weiler, M.; Wagener, T.; Lange, J.; Kralik, M.; Humer, F.; Mizyed, N.; Rimmer, A.; Barberá, J.A.; Andreo, B.; et al. Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties. Hydrol. Earth Syst. Sci. 2013, 17, 3305–3321. [Google Scholar] [CrossRef]
- Jourde, H.; Lafare, A.; Mazzilli, N.; Belaud, G.; Neppel, L.; Dörfliger, N.; Cernesson, F. Flash flood mitigation as a positive consequence of anthropogenic forcing on the groundwater resource in a karst catchment. Environ. Earth Sci. 2014, 71, 573–583. [Google Scholar] [CrossRef]
- Kong-A-Siou, L.; Fleury, P.; Johannet, A.; Estupina, V.B.; Pistre, S.; Dörfliger, N. Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer. J. Hydrol. 2014, 519, 3178–3192. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R.; Zhou, Z.-H. Experimental study on heterogeneous flow in porous media by tracing technology, and application of diffusion-limited aggregation fractal modeling. J. Hydrol. Eng. 2007, 38, 6690–6693. [Google Scholar]
- Liu, R.; Li, S.; Zhang, Q.; Zhang, W.; Sun, Z.; Zhu, M. Research on application of tracer experiment analysis method to water hazards management in underground engineering. Chin. J. Rock Mech. Eng. 2011, 31, 814–821. [Google Scholar]
- Sun, G.; Mei, Z. Practical Underground Connection Test Method; Gui Zhou: Guizhou People’s Publishing House: Guiyang, China, 1988; pp. 20–70. [Google Scholar]
- Daniel, B.; Tahoora, S.N.; Bernhard, K. Modeling the hydrological impact of land use change in a dolomitedominated karst system. J. Hydrol. 2018, 567, 267–279. [Google Scholar] [CrossRef]
- Labat, D.; Mangin, A. Transfer function approach for artificial tracer test interpretation in karstic systems. J. Hydrol. 2015, 529, 866–871. [Google Scholar] [CrossRef]
- Chen, Z.; Hartmann, A.; Goldscheider, N. A new approach to evaluate spatiotemporal dynamics of controlling parameters in distributed environmental models. Environ. Modell. Softw. 2017, 87, 1–16. [Google Scholar] [CrossRef]
- Huang, Y.; Hou, X.; Fu, Z.; Wang, J. Detection of leakage paths at the Wanyao dam body in Southwest China by hydrochemical analysis and tracer testing. Environ. Earth Sci. 2018, 77, 791. [Google Scholar] [CrossRef]
- Sarrazin, F.; Hartmann, A.; Pianosi, F.; Wagener, T. V2Karst V1.0. A parsimonious large-scale integrated vegetation-recharge model to simulate the impact of climate and land cover change in karst regions. Geosci. Model Dev. Discuss. 2018, 11, 4933–4964. [Google Scholar] [CrossRef]
- Lu, C.; Shu, L.; Yuan, L. Determination of hydrogeologic parameters of karst aquifer based on tracer test. J. Jilin Univ. Earth Sci. Ed. 2009, 39, 717–721. [Google Scholar]
- Xian, Y. Study of the Groundwater t-Racing and its Application in Karst Area; Hehai University: Nanjing, China, 2006; pp. 2–4. [Google Scholar]
- Yin, S.; Xu, B.; Xu, H.; Xiang, X. The application of chemical tracer experiments on exploring the mine water filling conditions. J. China Coal Soc. 2014, 36, 229–234. [Google Scholar]
- Wang, J.; Jiang, G.; Hou, M.; Chen, D. Application of electric conductivity to the tracing test: A case study o-f babao reservoir. Acta Geosci. Sin. 2005, 26, 371–374. [Google Scholar]
- Aquino, T.; Aubeneau, A.; Bolster, D. Peak and tail scaling of breakthrough curves in hydrologic tracer tests. Adv. Water Res. 2015, 78, 1–8. [Google Scholar] [CrossRef]
- Yonghe, G. Application of connection test in karst area. Geotech. Invest. Surv. 2016, 1, 519–525. [Google Scholar]
- Schneidera, A.; Hohenbrinkaetl, T.L. Variability of earthworm-induced biopores and their hydrological effectiveness in space and time. Pedobiol. J. Soil Ecol. 2018, 71, 8–19. [Google Scholar] [CrossRef]
Materials | Initial Setting Time | Final Setting Time | Mine Water Shutoff Applicability |
---|---|---|---|
Portland cement | 7–14 h | 12–36 h | Small fracture |
Sulphate aluminum cement | >25 min | <180 min | Dynamic water fracture |
Cement–water glass | 10–600 s | 10 min–dozens of minutes | Large discharge and high flow rate |
Polymer cement | 10–600 s | 10 min–dozens of minutes | High fracture density |
Chemical grouts | 10–60 s | 2–10 min | Deep pipes and cracks |
Volume Ratio | 1:1 | 2:1 | 3:1 | 5:1 | |
---|---|---|---|---|---|
C/W | |||||
0.6 | 170 | 100 | 90 | 170 | |
1 | 70 | 60 | 50 | 80 | |
1.5 | 45 | 40 | 35 | 30 |
Point | Revealing Point Depth | Topographical Features | Grouting Materials | C/W | Two-liquid Ratio | Initial Setting Time | Grouting Rate (L/min) |
---|---|---|---|---|---|---|---|
1 | 52.5 m | Limestone, filled with a small amount of yellow mud | Polymer cement | 1.25 | — | 5 min | 260 |
2 | 36 m | Limestone, broken belt | Single slurry | 1 | — | 15 h | 35 |
3 | 46 m | Cave, filling silt | Anti-scouring quick-setting double slurry | 1.5 | 5:1 | 30 s | 1100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, S.; Wang, J.; Zhang, B.; Li, H.; Li, L.; Lin, C.; Xu, Z.; Zhao, G.; Han, J. A Targeted Grouting and Water Blocking Method Based on Hydrological Tracer Testing and Its Engineering Applications. Water 2019, 11, 1000. https://doi.org/10.3390/w11051000
Zhang Y, Wang S, Wang J, Zhang B, Li H, Li L, Lin C, Xu Z, Zhao G, Han J. A Targeted Grouting and Water Blocking Method Based on Hydrological Tracer Testing and Its Engineering Applications. Water. 2019; 11(5):1000. https://doi.org/10.3390/w11051000
Chicago/Turabian StyleZhang, Yijie, Shugang Wang, Jing Wang, Bo Zhang, Haiyan Li, Liping Li, Chunjin Lin, Zhenhao Xu, Guodong Zhao, and Junfei Han. 2019. "A Targeted Grouting and Water Blocking Method Based on Hydrological Tracer Testing and Its Engineering Applications" Water 11, no. 5: 1000. https://doi.org/10.3390/w11051000
APA StyleZhang, Y., Wang, S., Wang, J., Zhang, B., Li, H., Li, L., Lin, C., Xu, Z., Zhao, G., & Han, J. (2019). A Targeted Grouting and Water Blocking Method Based on Hydrological Tracer Testing and Its Engineering Applications. Water, 11(5), 1000. https://doi.org/10.3390/w11051000