Attributing Changes in Streamflow to Land Use and Climate Change for 472 Catchments in Australia and the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Catchments
2.2. Attribution of Changes in Streamflow
2.3. Evaluation of Attribution Method
3. Results
3.1. Attribution of Changes in Streamflow
3.2. Influence of Catchment Characteristics
3.3. Evaluation of Attribution Method
4. Discussion
4.1. Comparison with Previous Studies
4.2. Potential of Attribution Method
4.3. Limitations of Attribution Method
4.4. Generalisation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mason, S.J.; Waylen, P.R.; Mimmack, G.M.; Rajaratnam, B.; Harrison, J.M. Changes in extreme rainfall events in South Africa. Clim. Chang. 1999, 41, 249–257. [Google Scholar] [CrossRef]
- Plummer, N.; Salinger, M.J.; Nicholls, M.J.; Suppiah, R.; Hennessy, K.J.; Leighton, R.M.; Trewin, B.; Page, C.M.; Lough, J.M. Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim. Chang. 1999, 42, 183–202. [Google Scholar] [CrossRef]
- Alpert, P.; Ben-Gai, T.; Baharad, A.; Benjamini, Y.; Yekutieli, D.; Colacino, M.; Diodato, L.; Ramis, C.; Homar, V.; Romero, R.; et al. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 2002, 29, 1–31. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Baeck, M.L.; Vitolo, R.; Stephenson, D.B.; Krajewski, W.F. On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol. 2011, 400, 103–120. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.-P.; Booij, M.J.; Lin, S.; Zhang, Q.; Lou, Z. Detection of trends in precipitation extremes in Zhejiang, east China. Theor. Appl. Climatol. 2012, 107, 201–210. [Google Scholar] [CrossRef]
- Blöschl, G.; Ardoin-Bardin, S.; Bonell, M.; Dorninger, M.; Goodrich, D.; Gutknecht, D.; Matamoros, D.; Merz, B.; Shand, P.; Szolgay, J. At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol. Process 2007, 21, 1241–1247. [Google Scholar] [CrossRef]
- Romanowicz, R.J.; Booij, M.J. Impact of land use and water management on hydrological processes under varying climatic conditions. Phys. Chem. Earth 2011, 36, 613–614. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Hoekstra, A.Y. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrol. Sci. J. 2018, 63, 1368–1385. [Google Scholar] [CrossRef] [Green Version]
- Renner, M.; Brust, K.; Schwärzel, K.; Volk, M.; Bernhofer, C. Separating the effects of changes in land cover and climate: A hydro-meteorological analysis of the past 60 yr in Saxony, Germany. Hydrol. Earth Syst. Sci. 2014, 18, 389–405. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X.; Sun, P.; Liu, S. The effect of forest harvesting and climatic variability on runoff in a large watershed: The case study in the Upper Minjing River of Yangtze River basin. J. Hydrol. 2012, 464–465, 1–11. [Google Scholar] [CrossRef]
- Wang, X. Advances in separating effects of climate variability and human activity on stream discharge: An overview. Adv. Water Resour. 2014, 71, 209–218. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Hoekstra, A.Y. Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia. Hydrol. Res. 2017, 48, 1143–1155. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45, W00A19. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J12. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, M. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study. Water Resour. Res. 2010, 46, W12525. [Google Scholar] [CrossRef]
- Rientjes, T.H.M.; Haile, A.T.; Kebede, E.; Mannaerts, C.M.M.; Habib, E.; Steenhuis, T.S. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin–Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 1979–1989. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 45, W00A07. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, D.; Jin, C.; Wang, A.; Wu, J.; Yuan, F. Impacts of climate change and land use change on runoff of forest catchment in northeast China. Hydrol. Process 2014, 28, 186–196. [Google Scholar] [CrossRef]
- Schaake, J.; Cong, S.; Duan, Q. Large sample basin experiments for hydrological model parameterization: Results of the model parameter experiment—MOPEX. IAHS Publ. 2006, 307, 9–28. [Google Scholar]
- Peel, M.C.; Chiew, F.H.S.; Western, A.W.; McMahon, T.A. Extension of Unimpaired Monthly Streamflow Data and Regionalisation of Parameter Values to Estimate Streamflow in Ungauged Catchments; National Land and Water Resources Audit Theme 1-Water Availability; Centre for Environmental Applied Hydrology The University of Melbourne: Melbourne, Australia, 2000. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fasano, G.; Franceschini, A. A multidimensional version of the Kolmogorov-Smirnov test. Mon. Not. R. Astron. Soc. 1987, 225, 155–170. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Boettcher, J. Le Sueur River—Watershed Conditions and Restoration and Protection Strategies; WRAPS Report; Pollution Control Agency: Brainerd, MN, USA, 2015. [Google Scholar]
- Bugosh, N. Lochsa River Subbasin Assessment; Lewiston Regional Office, Division of Environmental Quality: Lewiston, ID, USA, 1999.
- Lamson, K.; Clark, J.S. White River Watershed Assessment; Wasco County Soil and Water Conservation District: Dalles, OR, USA, 2004. [Google Scholar]
- Rogers, K.; Woodroffe, C.D. Working with Mangrove and Saltmarsh for Sustainable Outcomes; University of Wollongong and GeoQuest Research Centre: Wollongong, Australia, 2015. [Google Scholar]
- Rothrock, G. Watershed Overview and History North Fork Coeur d’Alene River Subbasin; Idaho Department of Environmental Quality: Boise, ID, USA, 2007.
- Simpson, N.T.; Piece, C.L.; Roe, K.L.; Weber, M.J. Boone River Watershed Stream Fish and Habitat Monitoring; Iowa State University and USGS: Ames, IA, USA, 2016.
- Marschner, F.J. Major Land Uses in the United States; U.S. Agricultural Research Service, Department of Agriculture: Washington, DC, USA, 1950.
- Australia and New Zealand Land Use, Agriculture and Minerals 1962 Map. Available online: https://www.antiquemapsandprints.com (accessed on 22 February 2019).
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- USGS. Available online: https://www.usgs.gov/ (accessed on 22 February 2019).
- Benito, E.; Santiago, J.; de Blas, E.; Varela, M. Deforestation of water-repellent soils in Galicia (NW Spain): Effects on surface runoff and erosion under simulated rainfall. Earth Surf. Process Landf. 2003, 28, 145–155. [Google Scholar] [CrossRef]
- Coe, M.T.; Latrubesse, E.M.; Ferreira, M.E.; Amsler, M.L. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 2011, 105, 119. [Google Scholar] [CrossRef]
- Levy, M.C.; Lopes, A.V.; Cohn, A.; Larsen, L.G.; Thompson, S.E. Land use change increases streamflow across the arc of deforestation in Brazil. Geophys. Res. Lett. 2018, 45, 3520–3530. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Keesstra, S.D. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surf. Process Landf. 2007, 32, 49–65. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Novara, A.; Brevik, E.C.; Vaezi, A.R.; Pulido, M.; Giménez-Morera, A.; Keesstra, S.D. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Prog. Phys. Geogr. Earth Environ. 2018, 42, 202–219. [Google Scholar] [CrossRef]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef]
- Nohara, D.; Kitoh, A.; Hosaka, M.; Oki, T. Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeorol. 2006, 7, 1076–1089. [Google Scholar] [CrossRef]
- Tapley, B.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Booij, M.J.; Schipper, T.C.; Marhaento, H. Attributing Changes in Streamflow to Land Use and Climate Change for 472 Catchments in Australia and the United States. Water 2019, 11, 1059. https://doi.org/10.3390/w11051059
Booij MJ, Schipper TC, Marhaento H. Attributing Changes in Streamflow to Land Use and Climate Change for 472 Catchments in Australia and the United States. Water. 2019; 11(5):1059. https://doi.org/10.3390/w11051059
Chicago/Turabian StyleBooij, Martijn J., Theo C. Schipper, and Hero Marhaento. 2019. "Attributing Changes in Streamflow to Land Use and Climate Change for 472 Catchments in Australia and the United States" Water 11, no. 5: 1059. https://doi.org/10.3390/w11051059
APA StyleBooij, M. J., Schipper, T. C., & Marhaento, H. (2019). Attributing Changes in Streamflow to Land Use and Climate Change for 472 Catchments in Australia and the United States. Water, 11(5), 1059. https://doi.org/10.3390/w11051059