Water Footprint of Crops on Rhodes Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methodology
3. Results
3.1. WFs per MU for 2013
3.2. Sensitivity Analysis
3.3. WFs for the Period 2000–2014
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoekstra, A.Y.; Martinez-Aldaya, M.; Avril, B. Proceedings of the ESF Strategic Workshop on Accounting for Water Scarcity and Pollution in the Rules of International Trade, Amsterdam, The Netherlands, 25–26 November 2010; Value of Water Research Report Series No. 54; UNESCO-IHE: Delft, The Netherlands, 2011. [Google Scholar]
- Symeonidou, S.; Vagiona, D. The role of the water footprint in the context of green marketing. Environ. Sci. Pollut. Res. 2018, 25, 26837–26849. [Google Scholar] [CrossRef]
- Kauffman, S.; Droogers, P.; Hunink, J.; Mwaniki, B.; Muchena, F.; Gicheru, P.; Bindraban, P.; Onduru, D.; Cleveringa, R.; Bouma, J. Green Water Credits–Exploring its potential to enhance ecosystem services by reducing soil erosion in the Upper Tana basin, Kenya. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 133–143. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Allan, J.A. Virtual Water: A Long Term Solution for Water Short Middle Eastern Economies? School of Oriental and African Studies (SOAS), University of London: London UK, 1997. [Google Scholar]
- Turner, R.K.; Georgiou, S.; Clark, R.; Brouwer, R.; Burke, J.J. Economic Valuation of Water Resources in Agriculture: From the Sectoral to a Functional Perspective of Natural Resource Management; Food & Agriculture Org: Rome, Italy, 2004; Volume 27. [Google Scholar]
- Falkenmark, M.; Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Res. Plan. Manag. 2006. [Google Scholar] [CrossRef]
- European Commission, EU Water Framework Directive. 2010. Available online: http://ec.europa.eu/environment/pubs/pdf/factsheets/water-framework-directive.pdf (accessed on 15 November 2018).
- Hoekstra, A.Y. The Global Dimension of Water Governance: Why the River Basin Approach Is No Longer Sufficient and Why Cooperative Action at Global Level Is Needed. Water 2010, 3, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Symeonidou, S.; Vagiona, D. Review of the Water Footprint Project within Geographically Delineated Area. J. Environ. Sci. Eng. B 2015, 4, 513–520. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- Chapagain, A.K. Globalisation of Water: Opportunities and Threats of Virtual Water Trade. Ph.D. Thesis, UNESCO-IHE, Institute for Water Education, Delft, The Netherlands, 2006. [Google Scholar]
- Bulsink, F.; Hoekstra, A.Y.; Booij, M.J. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrol. Earth Syst. Sci. 2010, 14, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.B.; Wu, P.T.; Engel, B.A.; Sun, S.K. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China. Sci. Total Environ. 2014, 497–498, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 2014, 18, 2219–2234. [Google Scholar] [CrossRef]
- Gobin, A.; Kersebaum, K.C.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.D.; Deelstra, J.; et al. Variability in the water footprint of arable crop production across European regions. Water 2017, 9, 93. [Google Scholar] [CrossRef]
- Zoumides, C.; Bruggeman, A.; Zachariadis, T. Global versus local crop water footprints: The case of Cyprus. In Proceedings of the Solving Water Crisis: Common Action toward Sustainable Water Footprint, London, UK, 26 March 2012. [Google Scholar]
- Zoumides, C.; Bruggeman, A.; Hadjikakou, M.; Zachariadis, T. Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecol. Indic. 2014, 43, 205–214. [Google Scholar] [CrossRef]
- Mellios, N.; Koopman, J.; Laspidou, C. Virtual Crop Water Export Analysis: The Case of Greece at River Basin District Level. Geosciences 2018, 8, 161. [Google Scholar] [CrossRef]
- Charchousi, D.; Tsoukala, V.K.; Papadopoulou, M.P. Benchmarking Methodologies for Water Footprint Calculation in Agriculture. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2012. [Google Scholar]
- Aldaya, M.M.; Muñoz, G.; Hoekstra, A.Y. Water Footprint of Cotton, Wheat and Rice Production in Central Asia; Value of Water Research Report Series; UNESCO-IHE, Institute for Water Education: Delft, The Netherlands, 2010. [Google Scholar]
- Ercin, A.E.; Mekonnen, M.M.; Hoekstra, A.Y. Sustainability of national consumption from a water resources perspective: The case study for France. Ecol. Econ. 2013, 88, 133–147. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual water trade. A quantification of virtual water flows between nations in relation to international trade. Int. Expert Meet. Virtual Water Trade 2002, 12, 1–244. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, M.P.; Marini, E.; Tsoukala, V.K. Is Water Footprint Assessment reliable in River Basin Scale? Eur. Water 2016, 56, 21–32. [Google Scholar]
- Aldaya, M.M.; Allan, J.A.; Hoekstra, A.Y. Strategic importance of green water in international crop trade. Ecol. Econ. 2010, 69, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Antonelli, M.; Liu, X.; Yang, H. Towards improvement of grey water footprint assessment: With an illustration for global maize cultivation. J. Clean. Prod. 2017, 147, 1–9. [Google Scholar] [CrossRef]
- Hellenic Statistical Authority (ELSTAT). Available online: http://www.statistics.gr/el/statistics/agr (accessed on 20 November 2017).
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- FAO; ISRIC. JRC: Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Saxton, K.E.; Johnson, H.P.; Shaw, R.H. Modeling evapotranspiration and soil moisture. Trans. ASAE 1974, 17, 673–677. [Google Scholar] [CrossRef]
- Kalabokidis, K.; Ager, A.; Finney, M.; Athanasis, N.; Palaiologou, P.; Vasilakos, C. AEGIS: A wildfire prevention and management information system. Nat. Hazards Earth Syst. Sci. 2016, 16. [Google Scholar] [CrossRef]
- CORINE Land Cover 2012. Available online: http://www.data.gov.gr/dataset/xartes-kalypshs-ghs-corine-land-cover-gia-ta-eth-2006-and-2012 (accessed on 10 December 2016).
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food & Agriculture Org: Rome, Italy, 1992; Volume 46. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.; Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 2006, 60, 186–203. [Google Scholar] [CrossRef]
- Chapman, D. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; UNESCO/WHO/UNEP: Nairobi, Kenya, 1996. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.3; Environmental Systems Research Institute: Redlands, CA, USA, 2009. [Google Scholar]
- Aldaya, M.M.; Martínez-Santos, P.; Llamas, M.R. Incorporating the water footprint and virtual water into policy: Reflections from the Mancha Occidental Region, Spain. Water Resour. Manag. 2010, 24, 941–958. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products; Value of Water Research Report Series; UNESCO-IHE, Institute for Water Education: Delft, The Netherlands, 2003; Available online: https://waterfootprint.org/media/downloads/Report13.pdf (accessed on 2 March 2019).
- Ma, X.; Ma, Y. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China. Sci. Total Environ. 2017, 586, 1150–1161. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption; Value of Water Research Report Series; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2011; p. 50. [Google Scholar]
- Papazafeiriou, Z.G. Crop Water Requirements; Ziti Publications: Thessaloniki, Greece, 1999. [Google Scholar]
- Papazafeiriou, Z.G. Principles and Practice of Irrigation; Ziti Publications: Thessaloniki, Greece, 1998. [Google Scholar]
- Jagtap, S.S.; Jones, J.W. Stability of crop coefficients under different climate and irrigation management practices. Irrig. Sci. 1989, 10, 231–244. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Van Oel, P.R. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water 2017, 9, 438. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Hess, T. Estimating green water footprints in a temperate environment. Water 2010, 2, 351–362. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Green-blue water accounting in a soil water balance. Adv. Water Resour. 2019, 129, 112–117. [Google Scholar] [CrossRef]
Average Values (m3 t−1) | Blue WF | Green WF | Consumptive WF | Grey WF | Total WF |
---|---|---|---|---|---|
Irrigated olives | 2678.97 | 1022.57 | 3701.54 | 942.19 | 4643.73 |
Rainfed olives | 0.00 | 2913.67 | 2913.67 | 1886.78 | 4800.45 |
Citrus | 613.30 | 420.27 | 1033.57 | 426.57 | 1460.13 |
Irrigated grapes | 181.82 | 84.24 | 266.06 | 125.94 | 392.00 |
Rainfed grapes | 0.00 | 587.70 | 587.70 | 382.91 | 970.60 |
Vegetables | 315.53 | 40.29 | 414.04 | 240.73 | 596.55 |
Melons | 265.69 | 16.84 | 328.28 | 192.10 | 474.61 |
Spring potatoes | 15.61 | 128.58 | 159.43 | 299.83 | 435.69 |
Summer potatoes | 366.08 | 33.64 | 469.76 | 311.20 | 710.92 |
Winter potatoes | 408.00 | 28.23 | 507.81 | 304.89 | 741.13 |
Soft wheat | 0.00 | 2561.19 | 2561.19 | 4624.43 | 7185.62 |
Hard wheat | 0.00 | 3336.72 | 3336.72 | 5737.63 | 9074.35 |
Barley | 0.00 | 2394.84 | 2394.84 | 1378.64 | 3773.48 |
Fodder crops | 0.00 | 1194.82 | 1194.82 | 762.72 | 1957.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Symeonidou, S.; Vagiona, D. Water Footprint of Crops on Rhodes Island. Water 2019, 11, 1084. https://doi.org/10.3390/w11051084
Symeonidou S, Vagiona D. Water Footprint of Crops on Rhodes Island. Water. 2019; 11(5):1084. https://doi.org/10.3390/w11051084
Chicago/Turabian StyleSymeonidou, Stella, and Dimitra Vagiona. 2019. "Water Footprint of Crops on Rhodes Island" Water 11, no. 5: 1084. https://doi.org/10.3390/w11051084
APA StyleSymeonidou, S., & Vagiona, D. (2019). Water Footprint of Crops on Rhodes Island. Water, 11(5), 1084. https://doi.org/10.3390/w11051084