Quantification of Temporal Variations in Base Flow Index Using Sporadic River Data: Application to the Bua Catchment, Malawi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Decision Procedure for Selection of Baseflow Separation Method and Implementation Tool
2.4. Baseflow Separation Steps
- (1)
- The baseflow separation was performed for each year of river data (1957–2009) producing a separate annual BFI value for each year where there was enough data in the period. It is commonly recommended in the literature to determine the long-term BFI which uses all the data successively [6,15], however here, it was not possible due to missing data. The mean annual BFI was therefore determined based on the individual years;
- (2)
- The baseflow separation was performed for each season of data (1957–2009) in the same manner as the annual period described above;
- (3)
- The total flow, baseflow and surface runoff flow from each baseflow separation were summed for each period;
- (4)
- Descriptive statistics (average, maximum and minimum, standard deviation and coefficient of variation) were determined for the annual and seasonal periods.
2.5. Statistical Trend Analysis
3. Results and Discussion
3.1. Annual and Seasonal BFI Analysis Coverage
3.2. Average Annual BFI
3.3. Average Seasonal BFI (Wet and Dry Season)
3.3.1. River Flow, Rainfall and Groundwater Patterns
3.3.2. Comments on the Source of Baseflow
3.4. Long Term Behavioral Changes in BFI—Statistical Trend Results
4. Conclusions
4.1. Catchment Originality
4.2. Generic Relevance to the Reader and the Wider Research Community
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brodie, R.; Sundaram, B.; Tottenham, R.; Hostetler, S.; Ransley, T. An Adaptive Management Framework for Connected Groundwater-Surface Water Resources in Australia; Bureau Rural Sciences: Canberra, Australia, 2007. [Google Scholar]
- International Commission on Groundwater. Surface Water and Groundwater Interaction. In A Contribution to the International Hydrological Programme; The United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 1980. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Lynch, P., Ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Bosch, D.D.; Arnold, J.G.; Allen, P.G.; Lim, K.-J.; Park, Y.S. Temporal variations in baseflow for the Little River experimental watershed in South Georgia, USA. J. Hydrol. Reg. Stud. 2017, 10, 110–121. [Google Scholar] [CrossRef]
- Smakhtin, V.U. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Van Lanen, H.A. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands, 2004; Volume 48. [Google Scholar]
- International Hydrological Programme of UNESCO. Groundwater Resources Assessment under the Pressures of Humanity and Climate Changes GRAPHIC; UNESCO: Paris, France, 2006. [Google Scholar]
- Mei, Y.; Anagnostou, E.N. A hydrograph separation method based on information from rainfall and runoff records. J. Hydrol. 2015, 523, 636–649. [Google Scholar] [CrossRef]
- Chimtengo, M.; Ngongondo, C.; Tumbare, M.; Monjerezi, M. Analysing changes in water availability to assess environmental water requirements in the Rivirivi River basin, Southern Malawi. Phys. Chem. Earth Parts A/B/C 2014, 67, 202–213. [Google Scholar] [CrossRef]
- Tallaksen, L. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Bloomfield, J.; Allen, D.; Griffiths, K. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK. J. Hydrol. 2009, 373, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Rassam, D.W.; Werner, A. Review of Groundwater-Surfacewater Interaction Modelling Approaches and Their Suitability for Australian Conditions; eWater Cooperative Research Centre: Canberra, Australia, 2008. [Google Scholar]
- Capesius, J.P.; Arnold, L.R. Comparison of Two Methods for Estimating Base Flow in Selected Reaches of the South Platte River, Colorado; US Geological Survey: Reston, VA, USA, 2012.
- Turner, J.V. Estimation and Prediction of the Exchange of Groundwater and Surface Water: Field Methodologies, eWater Technical Report; eWater Cooperative Research Centre: Canberra, Australia, 2009. [Google Scholar]
- UNESCO Southern Africa FRIEND IHP-V Project 1.1 Technical Documents in Hydrology No.15; UNESCO: Paris, France, 1997.
- Beck, H.E.; van Dijk, A.I.J.M.; Miralles, D.G.; de Jeu, R.A.; Bruijnzeel, L.A.; McVicar, T.R.; Schellekens, J. Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resour. Res. 2013, 49, 7843–7863. [Google Scholar] [CrossRef] [Green Version]
- Gustard, A.; Bullock, A.; Dixon, J. Low Flow Estimation in the United Kingdom; Institute of Hydrology: Wallingford, UK, 1992. [Google Scholar]
- Ngongondo, C.S. An analysis of long-term rainfall variability, trends and groundwater availability in the Mulunguzi river catchment area, Zomba mountain, Southern Malawi. Quat. Int. 2006, 148, 45–50. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hannart, P. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. J. Hydrol. 2003, 270, 167–181. [Google Scholar] [CrossRef]
- Esralew, R.A.; Lewis, J.M. Trends in Base Flow, Total Flow, and Base-Flow Index of Selected Streams in and Near Oklahoma through 2008, Scientific Investigations Report 2010–5104; U.S Department of the Interior, U.S Geological Survey: Reston, VA, USA, 2010.
- Institute of Hydrology. Low Flow Studies Report No 3; Institute of Hydrology: Wallingford, UK, 1980. [Google Scholar]
- Singh, S.K.; Pahlow, M.; Booker, D.J.; Shankar, U.; Chamorro, A. Towards baseflow index characterisation at national scale in New Zealand. J. Hydrol. 2019, 568, 646–657. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.; Cheng, L.; Zheng, H.; Wang, Y.; Huai, B.; Sun, W.; Qi, S.; Zhao, P.; Wang, Y.; Li, Q. Baseflow estimation for catchments in the Loess Plateau, China. J. Environ. Manag. 2019, 233, 264–270. [Google Scholar] [CrossRef]
- Hudak, A.T.; Wessman, C.A. Deforestation in Mwanza District, Malawi, from 1981 to 1992, as determined from Landsat MSS imagery. Appl. Geogr. 2000, 20, 155–175. [Google Scholar] [CrossRef]
- Chitete, S. The Nation “Malawi Drying up”. Available online: https://mwnation.com/malawi-drying-up/ (accessed on 16 April 2019).
- Sood, A.; Smakhtin, V.; Eriyagama, N.; Villholth, K.G.; Liyanage, N.; Wada, Y.; Ebrahim, G.; Dickens, C. Global Environmental Flow Information for the Sustainable Development Goals; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017; Volume 168. [Google Scholar]
- Kumambala, P.G. Sustainability of Water Resources Development for Malawi with Particular Emphasis on North and Central Malawi. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2010. [Google Scholar]
- Kambombe, O.; Odongo, V.; Mutua, B.; Wambua, R. Impact of climate variability and land use change on streamflow in lake Chilwa basin, Malawi. Int. J. Hydrol. 2018, 2, 364–370. [Google Scholar]
- Houghton-Carr, H.; Fry, M.; Wallingford, U. The decline of hydrological data collection for development of integrated water resource management tools in Southern Africa. IAHS Publ. 2006, 308, 51. [Google Scholar]
- Smith-Carington, A. Hydrological bulletin for the Bua Catchment: Water resource unit number 5. In Groundwater Section; Department of Lands, Valuation and Water: Lilongwe, Malawi, 1983. [Google Scholar]
- Government of Malawi, T. National Water Resources Master Plan 2017. Main Report: Existing Situation; Government of Malawi: Lilongwe, Malawi, 2017.
- Government of Malawi. Malawi Land Use Map; Forestry Commission: Lilongwe, Malawi, 2018. [Google Scholar]
- Government of Malawi. Water Resources Investment Strategy. Component 1—Water Resources Assessment, Annex I(ii) for WRAs 5-10; Government of Malawi: Lilongwe, Malawi, 2011.
- Government of Malawi. Final Report for consultancy services related to detailed design of the upgraded Kamuzu Barrage; Extracts from Main Report Chapters 4–11 related to Hydrology–Hydraulics–Water Demand; Ministry of Water Development and Irrigation: Lilongwe, Malawi, 2013.
- Government of Malawi. Malawi Hydrogeological and Water Quality Map 2018; Ministry of Agriculture, Irrigation and Water Development: Lilongwe, Malawi, 2018.
- Brodie, R.; Sundaram, B.; Tottenham, R.; Hostetler, S.; Ransley, T. An Overview of Tools for Assessing Groundwater-Surface Water Connectivity; Bureau of Rural Sciences: Canberra, Australia, 2007; Volume 133. [Google Scholar]
- Eckhardt, K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Dierauer, J.R.; Whitfield, P.H.; Allen, D.M. Assessing the suitability of hydrometric data for trend analysis: The “FlowScreen”package for R. Can. Water Resour. J./Revue Canadienne Resour. Hydriques 2017, 42, 269–275. [Google Scholar] [CrossRef]
- Wahl, K.L.; Wahl, T.L. Determining the flow of comal springs at New Braunfels, Texas. Unknown 1995, 95, 16–17. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Willems, P. A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ. Model. Softw. 2009, 24, 311–321. [Google Scholar] [CrossRef]
- Younghun Jung, Y.S.N.-I.W.; Lim, K.J. Web-Based BFlow System for the Assessment of Streamflow Characteristics at National Level. Water 2016, 8, 384. [Google Scholar] [CrossRef]
- Sloto, R.A.; Crouse, M.Y. HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis; US Department of the Interior, US Geological Survey: Reston, VA, USA, 1996.
- Dickinson, J.E.; Hanson, R.T.; Predmore, S.K. HydroClimATe: Hydrologic and Climatic Analysis Toolkit; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2014.
- Metcalfe, R.A.; Schmidt, B. Streamflow Analysis and Assessment Software (SAAS) (V4.1). 2016. Available online: http://people.trentu.ca/~rmetcalfe/SAAS.html (accessed on 1 August 2018).
- CRC for Catchment Hydrology. River Analysis Package (RAP) Brochure. 2003. Available online: https://toolkit.ewater.org.au/Tools/RAP (accessed on 2 August 2018).
- Lim, K.J.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.-S.; Muthukrishnan, S.; Tripathy, D. Automated Web GIS Based Hydrograph Analysis Tool, WHAT 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 1407–1416. [Google Scholar] [CrossRef]
- Gregor, B. BFI+ 3.0 Users’s Manual; Department of Hydrogeology, Faculty of Natural Science, Comenius University: Bratislava, Slovakia, 2010; 21p. [Google Scholar]
- Combalicer, E.; Lee, S.; Ahn, S.; Kim, D.; Im, S. Comparing groundwater recharge and base flow in the Bukmoongol small-forested watershed, Korea. J. Earth Syst. Sci. 2008, 117, 553–566. [Google Scholar] [CrossRef] [Green Version]
- St. Jacques, J.-M.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Harvey, C.L.; Dixon, H.; Hannaford, J. Developing best practice for infilling daily river flow data. In Role of Hydrology in Managing Consequences of a Changing Global Environment, Proceedings of the BHS Third International Symposium, Newcastle, UK, 19–23 July 2010; British Hydrological Society: London, UK, 2010; pp. 816–823. [Google Scholar]
- Ladson, A.R.; Brown, R.; Neal, B.; Nathan, R. A standard approach to baseflow separation using the Lyne and Hollick filter. Aust. J. Water Resour. 2013, 17, 25–34. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Dudley, R.W. Historical summer base flow and stormflow trends for New England rivers. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Oki, D.S. Trends in Streamflow Characteristics at Long-Term Gaging Stations, Hawaii, U.S Geological Survey Scientific Investigations Report 2004-5080; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2004.
- Government of Malawi. Water Resources Investment Strategy. Component 1—Water Resources Assessment. Annex II—Surface Water; Government of Malawi: Lilongwe, Malawi, 2011.
- Government of Malawi. National Irrigation Master Plan and Investment Framework; Ministry of Agriculture, Irrigation and Water Development: Lilongwe, Malawi, 2015.
- Mann, H.B. Nonparametric tests against trend. Econ. J. Econ. Soc. 1945, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975. [Google Scholar]
- Gumindoga, W.; Makurira, H.; Garedondo, B. Impacts of landcover changes on streamflows in the Middle Zambezi Catchment within Zimbabwe. Proc. Int. Assoc. Hydrol. Sci. 2018, 378, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.M.; Santos, C.A.; Moreira, M.; Corte-Real, J.; Silva, V.C.; Medeiros, I.C. Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Techamahasaranont, J.; Shrestha, S.; Babel, M.S.; Shrestha, R.P.; Jourdain, D. Spatial and temporal variation in the trends of hydrological response of forested watersheds in Thailand. Environ. Earth Sci. 2017, 76, 430. [Google Scholar] [CrossRef]
- Zhang, X.S.; Amirthanathan, G.E.; Bari, M.A.; Laugesen, R.M.; Shin, D.; Kent, D.M.; MacDonald, A.M.; Turner, M.E.; Tuteja, N.K. How streamflow has changed across Australia since the 1950s: Evidence from the network of hydrologic reference stations. Hydrol. Earth Syst. Sci. 2016, 20, 3947. [Google Scholar] [CrossRef]
- Anibas, C.; Schneidewind, U.; Vandersteen, G.; Joris, I.; Seuntjens, P.; Batelaan, O. From streambed temperature measurements to spatial-temporal flux quantification: Using the LPML method to study groundwater-surface water interaction. Hydrol. Process. 2016, 30, 203–216. [Google Scholar] [CrossRef]
- Addinsoft XLSTAT Statistical and Data Analysis Solution; XLSTAT: Long Island, NY, USA, 2019.
- Zhang, J.; Zhang, Y.; Song, J.; Cheng, L. Evaluating relative merits of four baseflow separation methods in Eastern Australia. J. Hydrol. 2017, 549, 252–263. [Google Scholar] [CrossRef]
Require Criteria/Baseflow Separation Tools | Flow Screen R | FORTRAN BFI | SWAT | WEST Pro | BFlow | HYSEP | HydroClimATe | SAAS | RAP | WHAT | BFI+ 3.0 | BFI Programme |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Automated | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Easily accessible | Y | N | Y | N | N | Y | Y | Y | Y | Y | Y | Y |
Free to obtain and operate | Y | - | Y | - | - | Y | Y | Y | Y | Y | Y | Y |
Requires minimal training to use | N | - | N | - | - | N | N | Y | N | Y | Y | Y |
Can select seasonal periods | - | - | N | - | - | - | - | Y | Y | N | N | Y |
Period | Annual BFI | Wet Season BFI | Dry Season BFI | Period | Annual BFI | Wet Season BFI | Dry Season BFI |
---|---|---|---|---|---|---|---|
1957/1958 | - | - | 0.94 | 1983/1984 | - | - | - |
1958/1959 | 0.66 | 0.65 | 0.85 | 1984/1985 | - | - | - |
1959/1960 | 0.53 | 0.48 | 0.96 | 1985/1986 | - | 0.80 | - |
1960/1961 | - | 0.44 | - | 1986/1987 | 0.81 | 0.80 | 0.99 |
1961/1962 | 0.83 | 0.81 | 0.91 | 1987/1988 | 0.62 | 0.58 | 0.95 |
1962/1963 | - | - | 0.99 | 1988/1989 | - | - | - |
1963/1964 | 0.77 | 0.75 | 0.98 | 1989/1990 | 0.77 | 0.75 | 0.92 |
1964/1965 | 0.79 | 0.77 | 0.96 | 1990/1991 | 0.76 | 0.74 | 0.97 |
1965/1966 | - | 0.69 | - | 1991/1992 | 0.43 | 0.41 | 0.87 |
1966/1967 | 0.48 | 0.40 | 0.94 | 1992/1993 | - | 0.50 | - |
1967/1968 | 0.58 | 0.54 | 0.83 | 1993/1994 | - | - | 0.95 |
1968/1969 | - | - | 0.81 | 1994/1995 | 0.60 | 0.60 | 0.91 |
1969/1970 | - | - | - | 1995/1996 | 0.54 | 0.53 | 0.84 |
1970/1971 | - | - | - | 1996/1997 | 0.76 | 0.75 | 0.89 |
1971/1972 | - | 0.64 | - | 1997/1998 | 0.90 | 0.90 | 0.87 |
1972/1973 | - | 0.47 | - | 1998/1999 | 0.76 | 0.74 | 0.92 |
1973/1974 | 0.68 | 0.62 | 0.94 | 1999/2000 | 0.75 | 0.73 | 0.87 |
1974/1975 | 0.72 | 0.72 | 0.99 | 2000/2001 | - | - | 0.95 |
1975/1976 | 0.69 | 0.61 | 0.95 | 2001/2002 | 0.94 | 0.88 | 0.98 |
1976/1977 | 0.81 | 0.77 | 0.99 | 2002/2003 | - | 0.85 | - |
1977/1978 | - | - | 0.91 | 2003/2004 | - | - | 0.99 |
1978/1979 | 0.80 | 0.76 | 0.99 | 2004/2005 | 0.84 | 0.82 | 0.92 |
1979/1980 | - | 0.65 | - | 2005/2006 | 0.90 | 0.82 | 0.98 |
1980/1981 | 0.75 | 0.71 | 0.99 | 2006/2007 | 0.87 | 0.81 | 0.96 |
1981/1982 | - | - | - | 2007/2008 | 0.92 | 0.87 | 0.99 |
1982/1983 | - | 0.64 | - | 2008/2009 | 0.88 | 0.81 | 0.99 |
Gauge ID | River Name | Period of Data Coverage | No of Years of Available Data; No of Annual, Wet Season, Dry Season Periods with Data | Annual | Wet Season | Dry Season |
---|---|---|---|---|---|---|
5C1 | Bua | 1957–2009 | 52; 30, 39, 37 | 58% | 75% | 71% |
5D1 | Bua | 1958–2007 | 49; 25, 29, 31 | 51% | 59% | 63% |
5D2 | Bua | 1953–2005 | 52; 34, 42, 35 | 65% | 81% | 67% |
5D3 | Mtiti | 1958–2003 | 45;27, 30, 36 | 60% | 67% | 80% |
5E6 | Bua | 1970–2008 | 38; 23, 27, 26 | 61% | 61% | 68% |
5F1 | Rusa | 1964–2005 | 41; 24, 28, 27 | 59% | 68% | 66% |
Gauge ID (River) | 5C1 (Bua) | 5D1 (Bua) | 5D2 (Bua) | 5D3 (Mtiti) | 5E6 (Bua) | 5F1 (Rusa) |
---|---|---|---|---|---|---|
Data record | 1957–2009 | 1958–2007 | 1953–2005 | 1958–2003 | 1970–2008 | 1964–2005 |
ANNUAL | ||||||
Average BFI | 0.74 | 0.75 | 0.76 | 0.48 | 0.54 | 0.80 |
Minimum Average BFI | 0.43 | 0.43 | 0.11 | 0.05 | 0.37 | 0.26 |
Maximum Average BFI | 0.94 | 0.94 | 0.98 | 0.84 | 0.70 | 0.98 |
Standard Deviation | 0.13 | 0.17 | 0.24 | 0.28 | 0.09 | 0.18 |
WET SEASON | ||||||
Average BFI | 0.69 | 0.74 | 0.74 | 0.45 | 0.46 | 0.46 |
Minimum Average BFI | 0.40 | 0.41 | 0.11 | 0.05 | 0.25 | 0.25 |
Maximum Average BFI | 0.90 | 0.93 | 0.98 | 0.77 | 0.90 | 0.90 |
Standard Deviation | 0.14 | 0.17 | 0.22 | 0.26 | 0.13 | 0.13 |
DRY SEASON | ||||||
Average BFI | 0.94 | 0.93 | 0.84 | 0.83 | 0.90 | 0.89 |
Minimum Average BFI | 0.83 | 0.55 | 0.55 | 0.00 | 0.47 | 0.61 |
Maximum Average BFI | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 |
Standard Deviation | 0.05 | 0.11 | 0.11 | 0.23 | 0.12 | 0.10 |
Gauge ID (River) | 5C1 (Bua) | 5D1 (Bua) | 5D2 (Bua) | 5D3 (Mtiti) | 5E6 (Bua) | 5F1 (Rusa) |
---|---|---|---|---|---|---|
Data record | 1957–2009 | 1958–2007 | 1953–2005 | 1958–2003 | 1970–2008 | 1964–2005 |
ANNUAL | ||||||
MK Statistic ‘S’ | 151 | −166 | −107 | 125 | −90 | −29 |
Trend (1% sig. level) | Increasing | Decreasing | No trend | Increasing | No trend | No trend |
WET SEASON | ||||||
MK Statistic ‘S’ | 241 | −214 | −188 | 161 | −102 | −50 |
Trend (1% sig. level) | Increasing | Decreasing | Decreasing | Increasing | No trend | No trend |
DRY SEASON | ||||||
MK Statistic ‘S’ | 62 | −142 | −82 | 16 | 4 | −17 |
Trend (1% sig. level) | No trend | No trend | No trend | No trend | No trend | No trend |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, L.; Kalin, R.M.; Bertram, D.; Kanjaye, M.; Nkhata, M.; Sibande, H. Quantification of Temporal Variations in Base Flow Index Using Sporadic River Data: Application to the Bua Catchment, Malawi. Water 2019, 11, 901. https://doi.org/10.3390/w11050901
Kelly L, Kalin RM, Bertram D, Kanjaye M, Nkhata M, Sibande H. Quantification of Temporal Variations in Base Flow Index Using Sporadic River Data: Application to the Bua Catchment, Malawi. Water. 2019; 11(5):901. https://doi.org/10.3390/w11050901
Chicago/Turabian StyleKelly, Laura, Robert M. Kalin, Douglas Bertram, Modesta Kanjaye, Macpherson Nkhata, and Hyde Sibande. 2019. "Quantification of Temporal Variations in Base Flow Index Using Sporadic River Data: Application to the Bua Catchment, Malawi" Water 11, no. 5: 901. https://doi.org/10.3390/w11050901
APA StyleKelly, L., Kalin, R. M., Bertram, D., Kanjaye, M., Nkhata, M., & Sibande, H. (2019). Quantification of Temporal Variations in Base Flow Index Using Sporadic River Data: Application to the Bua Catchment, Malawi. Water, 11(5), 901. https://doi.org/10.3390/w11050901