A Statistical–Distributed Model of Average Annual Runoff for Water Resources Assessment in DPR Korea
Abstract
:1. Introduction
2. Rainfall–Runoff Relationship and Runoff Impact Factors
2.1. The Precipitation and Temperature Characteristics in DPR Korea
2.2. Watershed Water Balance Relationship
2.3. Factors Affecting the Annual Runoff Formation by PCA
2.3.1. The Primary Factor: Average Annual Precipitation
2.3.2. The Relationship between Average Annual Losses and Average Annual Air Temperature
2.3.3. The Relationship between Average Annual Losses and Average Annual Precipitation Intensity
2.3.4. The Relationship between Continuous Residue and Air Temperature of the Hot Season
3. Development of an Empirical Average Annual Runoff Model
3.1. Model Development and Description
3.2. Model Verification on Guauged Area
3.3. Cartography of Average Annual Runoff Map
- is the influence coefficients of average annual temperature in grid cell ;
- is average annual precipitation in grid cell ;
- is average annual precipitation intensity in grid cell ;
- is the temperature of hot season affecting the annual evaporation in grid cell .
4. Application on Tumen River Basin
4.1. The Natural Geographic Characteristics of Tumen River Basin
4.2. Water Resources of Tumen River Basin (DPR Korea Side)
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kannan, N.; Santhi, C.; Arnold, J.G. Development of an automated procedure for estimation of the spatial variation of runoff in large river basins. J. Hydrol. 2008, 359, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, X.; Liao, W.; Jiang, Y.; Huang, X.; Liu, J.; Song, X.; Wang, H. Monthly spatial distributed water resources assessment: A case study. Comput. Geosci. 2012, 45, 319–330. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Singh, V.P. Review on Regional Water Resources Assessment Models under Stationary and Changing Climate. Water Res. Manag. 2004, 18, 591–612. [Google Scholar] [CrossRef]
- Hickel, K.; Zhang, L. Estimating the impact of rainfall seasonality on mean annual water balance using a top-down approach. J. Hydrol. 2006, 331, 409–424. [Google Scholar] [CrossRef]
- Church, M.R.; Bishop, G.D.; Cassell, D.L. Maps of regional evapotranspiration and runoff/precipitation ratios in the northeast United States. J. Hydrol. 1995, 168, 283–298. [Google Scholar] [CrossRef]
- Bishop, G.D.; Church, M.R. Automated approaches for regional runoff mapping in the northeastern United States. J. Hydrol. 1992, 138, 361–383. [Google Scholar] [CrossRef]
- Bishop, G.D.; Church, M.R. Mapping long-term regional runoff in the eastern United States using automated approaches. J. Hydrol. 1995, 169, 189–207. [Google Scholar] [CrossRef]
- Hickel, K.; Zhang, L. The Impact of Rainfall Seasonality on Mean Annual Water Balance in Catchments with Different Land Cover. In CRC for Catchment Hydrology; eWater: Canberra, Australia, 2003. [Google Scholar]
- Milly, P.C.D. Climate, interseasonal storage of soil water, and the annual water balance. Adv. Water Res. 1994, 17, 19–24. [Google Scholar] [CrossRef]
- Arnell, N.W. Grid mapping of river discharge. J. Hydrol. 1995, 167, 39–56. [Google Scholar] [CrossRef]
- Menció, A.; Folch, A.; Mas-Pla, J. Identifying key parameters to differentiate groundwater flow systems using multifactorial analysis. J. Hydrol. 2012, 472–473, 301–313. [Google Scholar] [CrossRef]
- Singh, R.; Archfield, S.A.; Wagener, T. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments—A comparative hydrology approach. J. Hydrol. 2014, 517, 985–996. [Google Scholar] [CrossRef]
- Christine, L.G.; John, D.A.; Scott, V.O. Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim. Res. 1998, 10, 35–49. [Google Scholar]
- Milly, P.C.D.; Eagleson, P.S. Effects of spatial variability on annual average water balance. Water Resour. Res. 1987, 23, 2135–2143. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Phillips, D.L. A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. Temporal and spatial variability of the global water balance. Clim. Chang. 2013, 120, 375–387. [Google Scholar] [CrossRef]
- Boughton, W.; Chiew, F. Estimating runoff in ungauged catchments from rainfall, PET and the AWBM model. Environ. Model. Softw. 2007, 22, 476–487. [Google Scholar] [CrossRef]
- Arora, V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Helfer, F.; Lemckert, C.; Zhang, H. Impacts of climate change on temperature and evaporation from a large reservoir in Australia. J. Hydrol. 2012, 475, 365–378. [Google Scholar] [CrossRef]
- Krug, W.R.; Gebert, W.A.; Graczyk, D.J.; Stevens, D.L., Jr.; Rochelle, B.P.; Church, M.R. Map of Mean Annual Runoff for the Northeastern, Southeastern, and Mid-Atlantic United States, Water Years, 1951–1980; Water-Resources Investigations Report, 88-4094; U.S. Geological Survey: Reston, VA, USA, 1990; p. 15.
- Zhou, X.; Zhang, Y.; Wang, Y.; Zhang, H.; Vaze, J.; Zhang, L.; Yang, Y.; Zhou, Y. Benchmarking global land surface models against the observed mean annual runoff from 150 large basins. J. Hydrol. 2012, 470–471, 269–279. [Google Scholar] [CrossRef]
- David, M.W.; Gregory, J.M. Explaining spatial variability in mean annual runoff in the conterminous United States. Clim. Res. 1999, 11, 149–159. [Google Scholar]
- Smith, M.B.; Koren, V.I.; Zhang, Z.; Reed, S.M.; Pan, J.-J.; Moreda, F. Runoff response to spatial variability in precipitation: An analysis of observed data. J. Hydrol. 2004, 298, 267–286. [Google Scholar] [CrossRef]
- Kirkby, M.J.; Bracken, L.J.; Shannon, J. The influence of rainfall distribution and morphological factors on runoff delivery from dryland catchments in SE Spain. CATENA 2005, 62, 136–156. [Google Scholar] [CrossRef]
- Ignatov, A.V.; Kichigina, N.V. Modeling elements and geographical factors of formation of the monthly runoff as exemplified by the Kuda river. Geogr. Nat. Res. 2010, 31, 396–402. [Google Scholar] [CrossRef]
- Greenwood, A.J.B.; Benyon, R.G.; Lane, P.N.J. A method for assessing the hydrological impact of afforestation using regional mean annual data and empirical rainfall–runoff curves. J. Hydrol. 2011, 411, 49–65. [Google Scholar] [CrossRef]
- Chang, H.; Johnson, G.; Hinkley, T.; Jung, I.-W. Spatial analysis of annual runoff ratios and their variability across the contiguous U.S. J. Hydrol. 2014, 511, 387–402. [Google Scholar] [CrossRef]
- Westra, S.; Brown, C.; Lall, U.; Sharma, A. Modeling multivariable hydrological series: Principal component analysis or independent component analysis? Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Wotling, G.; Bouvier, C.; Danloux, J.; Fritsch, J.M. Regionalization of extreme precipitation distribution using the principal components of the topographical environment. J. Hydrol. 2000, 233, 86–101. [Google Scholar] [CrossRef]
- Reder, A.; Rianna, G.; Vezzoli, R.; Mercogliano, P. Assessment of possible impacts of climate change on the hydrological regimes of different regions in China. Adv. Clim. Chang. Res. 2016, 7, 169–184. [Google Scholar] [CrossRef]
- Beven, K.; Robert, E. Horton’s perceptual model of infiltration processes. Hydrol. Proc. 2004, 18, 3447–3460. [Google Scholar] [CrossRef]
- Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Qiao, Y.; Wang, Y. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Sci. Total Environ. 2017, 595, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Proc. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Beven, K. Infiltration excess at the Horton Hydrology Laboratory (or not?). J. Hydrol. 2004, 293, 219–234. [Google Scholar] [CrossRef]
- De Jong van Lier, Q.; Sparovek, G.; Flanagan, D.C.; Bloem, E.M.; Schnug, E. Runoff mapping using WEPP erosion model and GIS tools. Comput. Geosci. 2005, 31, 1270–1276. [Google Scholar] [CrossRef]
- Milewski, A.; Sultan, M.; Yan, E.; Becker, R.; Abdeldayem, A.; Soliman, F.; Gelil, K.A. A remote sensing solution for estimating runoff and recharge in arid environments. J. Hydrol. 2009, 373, 1–14. [Google Scholar] [CrossRef]
- Cheng, Q.; Ko, C.; Yuan, Y.; Ge, Y.; Zhang, S. GIS modeling for predicting river runoff volume in ungauged drainages in the Greater Toronto Area, Canada. Comput. Geosci. 2006, 32, 1108–1119. [Google Scholar] [CrossRef]
- Graczyk, D.J.; Gebert, W.A.; Krug, W.R.; Allord, G.J. Maps of Runoff in the Northeastern Region and the Southern Blue Ridge Province of the United States During Selected Periods in 1983–1985; Open-File Report, 87-106; U.S. Geological Survey: Reston, VA, USA, 1987; p. 12.
- Sauquet, E. Mapping mean annual river discharges: Geostatistical developments for incorporating river network dependencies. J. Hydrol. 2006, 331, 300–314. [Google Scholar] [CrossRef]
- Yan, Z.; Xia, J.; Gottschalk, L. Mapping runoff based on hydro-stochastic approach for the Huaihe River Basin, China. J. Geogr. Sci. 2011, 21, 441–457. [Google Scholar] [CrossRef]
- Milly, P.C.D. Climate, soil water storage, and the average annual water balance. Water Resour. Res. 1994, 30, 2143–2156. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.; Jing, Y.; Liu, Y.; Sun, G. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci. Total Environ. 2017, 596–597, 256–265. [Google Scholar] [CrossRef]
- Caracciolo, D.; Deidda, R.; Viola, F. Analytical estimation of annual runoff distribution in ungauged seasonally dry basins based on a first order Taylor expansion of the Fu’s equation. Water Res. 2017, 109, 320–332. [Google Scholar] [CrossRef]
- Bostan, P.A.; Heuvelink, G.B.M.; Akyurek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 115–126. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Xia, J.; Gippel, C.J.; Wang, R.; Zeng, S. Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China. Water Res. Manag. 2015, 29, 2563–2579. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, H.; Wang, Y.; Zhu, Y. Assessing the impact of climate variability and human activities on streamflow variation. Hydrol. Earth Syst. Sci. 2016, 20, 1547–1560. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Teng, J.; Vaze, J.; Post, D.A.; Perraud, J.M.; Kirono, D.G.C.; Viney, N.R. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Delfs, J.O.; Park, C.H.; Kolditz, O. A sensitivity analysis of Hortonian flow. Water Res. 2009, 32, 1386–1395. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average daily maximum temperatures (°C) | −1 | 2 | 9 | 17 | 23 | 27 | 29 | 29 | 25 | 18 | 9 | 2 |
Average daily minimum temperature (°C) | −11 | −8 | −2 | 5 | 11 | 16 | 21 | 20 | 14 | 7 | 0 | −7 |
Average precipitation amount (mm) | 12 | 11 | 25 | 50 | 72 | 90 | 275 | 213 | 100 | 40 | 35 | 16 |
Average precipitation days (d) | 5 | 4 | 5 | 7 | 8 | 9 | 14 | 11 | 7 | 6 | 7 | 6 |
No | Region | First Component | Second Component | Third Component | Fourth Component | |||
---|---|---|---|---|---|---|---|---|
Cumulative | Cumulative | Cumulative | ||||||
1 | Taedong River Bain | 86.6 | 5.9 | 92.5 | 4.1 | 96.6 | 1.2 | 97.8 |
2 | Chongchon River Basin | 87.9 | 6.0 | 93.9 | 2.2 | 96.1 | 1.8 | 97.9 |
3 | Ryesong River Basin, Rimjin River Basin | 88.1 | 5.2 | 93.3 | 4.8 | 98.1 | 1.0 | 99.1 |
4 | Abrok River Basin | 74.9 | 7.2 | 82.1 | 6.4 | 88.5 | 3.8 | 92.3 |
5 | East coast area | 66.5 | 11.1 | 77.6 | 8.3 | 85.9 | 4.6 | 89.9 |
6 | Whole DPR Korea | 68.5 | 7.0 | 75.5 | 5.2 | 80.7 | 4.5 | 85.2 |
Statistics | Relative Error (%) | ||
---|---|---|---|
≤3.0 | 3.1~5.0 | 5.1~10.0 | |
The number of sites | 62 | 21 | 10 |
Rate occupied sites (%) | 66.67 | 22.58 | 10.75 |
Accumulated number of sites | 62 | 83 | 93 |
Accumulated rate of sites (%) | 66.67 | 89.25 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ri, T.; Jiang, J.; Sivakumar, B.; Pang, T. A Statistical–Distributed Model of Average Annual Runoff for Water Resources Assessment in DPR Korea. Water 2019, 11, 965. https://doi.org/10.3390/w11050965
Ri T, Jiang J, Sivakumar B, Pang T. A Statistical–Distributed Model of Average Annual Runoff for Water Resources Assessment in DPR Korea. Water. 2019; 11(5):965. https://doi.org/10.3390/w11050965
Chicago/Turabian StyleRi, Tongho, Jiping Jiang, Bellie Sivakumar, and Tianrui Pang. 2019. "A Statistical–Distributed Model of Average Annual Runoff for Water Resources Assessment in DPR Korea" Water 11, no. 5: 965. https://doi.org/10.3390/w11050965
APA StyleRi, T., Jiang, J., Sivakumar, B., & Pang, T. (2019). A Statistical–Distributed Model of Average Annual Runoff for Water Resources Assessment in DPR Korea. Water, 11(5), 965. https://doi.org/10.3390/w11050965