Evaluation of Future Flood Risk According to RCP Scenarios Using a Regional Flood Frequency Analysis for Ungauged Watersheds
Abstract
:1. Introduction
2. Study Areas and Data Sources
3. Regional Flood Frequency Analysis
4. Applications
4.1. Design Floods for Climate Change Scenarios
4.2. Flood Risk Assessment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, V.P. Chapter 10—Reservoir sizing. Dev. Water Sci. 2003, 51, 555–612. [Google Scholar]
- United States Geological Survey. User’s Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines; United States Geological Survey: Reston, VA, USA, 2006.
- Institute of Hydrology. Flood Estimation Handbook; Institute of Hydrology: Wallingford, UK, 1999. [Google Scholar]
- Centre for Ecology & Hydrology (CEH). European Procedures for Flood Frequency Estimation; European Cooperation in Science and Technology: Lancaster, UK, 2012. [Google Scholar]
- The Institution of Engineers. Australian Rainfall and Runoff; Commonwealth of Australia (Geoscience Australia): Canberra, Australia, 2001. [Google Scholar]
- MCKerchar, A.; Macky, G.H. Comparison of a regional method for estimating design floods with two rainfall-based methods. J. Hydrol. 2001, 40, 129–138. [Google Scholar]
- Calver, A.; Stewart, E.; Goodsell, G. Comparative analysis of statistical and catchment modeling approaches to river flood frequency estimation. J. Flood Risk Manag. 2009, 2, 24–31. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.K.; Kim, T.W.; Kang, J.Y. Comparative study on calculation method for design flood discharge of dam. J. Korea Water Resour. Assoc. 2011, 44, 940–954. [Google Scholar] [CrossRef]
- Choi, J.; Ji, J.; Yi, J. A study on rainfall-runoff frequency analysis for estimating design flood. J. Korea Water Resour. Assoc. 2015, 48, 605–612. [Google Scholar]
- Korea Water Resources Association (KWRA). Commentary of Rivers Design Standard; KWRA: Seoul, Korea, 2005. [Google Scholar]
- Rogger, M.; Kohl, B.; Pirkl, H.; Viglione, A.; Komma, J.; Kirnbauer, R.; Merz, R.; Blöschl, G. Runoff models and flood frequency statistics for design flood estimation in Austria—Do they tell a consistent story? J. Hydrol. 2012, 456, 30–43. [Google Scholar] [CrossRef]
- Potter, K.W.; Lattenmaier, D.P. A comparison of regional flood frequency estimation methods using are sampling method. Water Resour. Res. 1990, 26, 415–424. [Google Scholar] [CrossRef]
- Cunnane, C. Statistical distributions for flood frequency analysis. World Meteorological Organization Operational. Hydrol. Rep. 1989, 33, 718. [Google Scholar]
- Stedinger, J.R.; Tasker, G.D. Regional hydrologic analysis 1. Ordinary, weighted and generalized least squares compared. Water Resour. Res. 1985, 21, 1421–1432. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Ekstrӧm, M.; Fowler, H.J.; Kilsby, C.G.; Jones, P.D. New estimates of future changes in extreme rainfall across the UK using regional climate model integration. 2. Future estimates and use in impact studies. J. Hydrol. 2005, 300, 234–251. [Google Scholar] [CrossRef]
- Cameron, D. An application of the UKCIP02 climate change scenarios to flood estimation by continuous simulation for a gauged catchment in the northeast of Scotland, UK (with uncertainty). J. Hydrol. 2006, 328, 212–226. [Google Scholar] [CrossRef]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extreme in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res. 2006, 111, D06105. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, B.K.; Kyung, M.S.; Kim, H.S. Impact assessment of climate change on extreme rainfall and I-D-F analysis. J. Korea Water Resour. Assoc. 2008, 41, 379–394. [Google Scholar] [CrossRef]
- Nam, W.S.; Ahn, H.J.; Kim, S.H.; Heo, J.H. The impact of climate change on sub-daily extreme rainfall of Han river basin. J. Korean Soc. Disaster Secur. 2015, 8, 11–17. [Google Scholar]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414, 539–549. [Google Scholar] [CrossRef]
- Arnaud, P.; Cantet, P.; Aubert, Y. Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrol. Sci. J. 2016, 61, 36–49. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Long-Term Comprehensive Plan for Water Resources; MOLIT: Seoul, Korea, 2006.
- Korea Meteorological Administration (KMA). Available online: https://www.climate.go.kr (accessed on 25 October 2018).
- Kim, M.-K.; Lee, D.-H.; Kim, J. Production and validation of daily grid data with 1 km resolution in South Korea. Ku Clim. Res. Inst. Publ. 2013, 8, 13–25. [Google Scholar]
- You, J.; Kwon, H.-H.; Lee, J.-H.; Kim, T.-W. Influence of evapotranspiration on future drought risk using bivariate drought frequency curves. KSCE J. Civ. Eng. 2016, 20, 2059–2069. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Ministry of Land, Infrastructure and Transport (MOLIT). Comprehensive Master Plans for Han River Basin; MOLIT: Seoul, Korea, 2008.
- Ministry of Land, Infrastructure and Transport (MOLIT). Comprehensive Master Plans for Nakdong River Basin; MOLIT: Seoul, Korea, 2009.
- Ministry of Land, Infrastructure and Transport (MOLIT). Comprehensive Master Plans for Geum River Basin; MOLIT: Seoul, Korea, 2008.
- Ministry of Land, Infrastructure and Transport (MOLIT). Water Vision for 2011~2020; MOLIT: Seoul, Korea, 2011.
- Yoon, Y.N.; Shin, C.-K.; Jang, S.-H. An estimation of flood quantiles at ungauged locations by index flood frequency curves. J. Korea Water Resour. Assoc. 2005, 38, 1–9. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Forecast Verification for the African Severe Weather Forecasting Demonstration Projects; WMO: Geneva, Switzerland, 2014. [Google Scholar]
- Bessafi, M.; Morel, B.; Lan-Sun-Luk, J.-D.; Chabriat, J.-P.; Jeanty, P. A method for mapping monthly solar irradiation over complex areas of topography: Réunion Island’s case study. In Climate-Smart Technologies; Springer: Berlin, Germany, 2013; pp. 295–306. [Google Scholar]
- Quintero, F.; Mantilla, R.; Anderson, C.; Claman, D.; Krajewski, W. Assessment of changes in flood frequency due to the effects of climate change: Implications for engineering design. Hydrology 2018, 5, 19. [Google Scholar] [CrossRef]
- Kim, B.S.; HA, S.R. The impact assessment of climate change on design flood in Mihochen basin based on the representative concentration pathway climate change scenario. J. Wetl. Res. 2013, 15, 105–114. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
Method | Period | Source of Data | ||
---|---|---|---|---|
Present (S0) | FFA | 1995–2014 (20 years) | Observed Data | |
DRRA | Han River: 56 stations (~2004) | Comprehensive Master Plans for Han River Basin [30] | ||
Nakdong River: 60 stations (~2007) | Comprehensive Master Plans for Nakdong River Basin [31] | |||
Geum River: 41 stations (~2004) | Comprehensive Master Plans for Geum River Basin [32] | |||
NFS0 | 1967–2013 | Natural flow (tank model) | Water Vision for 2011~2020 [33] | |
Future (S1) | NFS1 | 2011–2040 | CCIC_APPL_WTRS_RCP4.5_RO_2000_2100_ALL_IC200(KMA) CCIC_APPL_WTRS_RCP8.5_RO_2000_2100_ALL_IC200(KMA) | |
Future (S2) | NFS2 | 2041–2070 | ||
Future (S3) | NFS3 | 2071–2100 |
Medium-Sized Watersheds | Coefficient | |||
---|---|---|---|---|
a | b | c | ||
Han River | # 1001 | 2.447 | 0.764 | 0.137 |
# 1002 | 3.026 | 0.714 | 0.165 | |
# 1012 | 2.620 | 0.749 | 0.145 | |
# 1017 | 41.834 | 0.842 | −0.235 | |
Nakdong River | # 2011 | 4.145 | 0.111 | 0.739 |
# 2014 | 3.113 | 0.717 | 0.159 | |
# 2017 | 2.148 | 0.408 | 0.493 | |
Geum River | # 3001 | 3.013 | 0.715 | 0.164 |
# 3009 | 2.718 | 0.740 | 0.150 | |
# 3011 | 2.875 | 0.726 | 0.158 | |
# 3012 | 3.985 | 0.212 | 0.638 | |
# 3014 | 3.315 | 0.177 | 0.692 |
Period | Return Period (Year) | ||||
---|---|---|---|---|---|
30 | 50 | 80 | 100 | 200 | |
S0 | 2.01 | 2.19 | 2.37 | 2.45 | 2.70 |
S1 | 2.17 | 2.43 | 2.69 | 2.81 | 3.23 |
S2 | 2.03 | 2.24 | 2.45 | 2.55 | 2.88 |
S3 | 2.38 | 2.79 | 3.22 | 3.44 | 4.26 |
Watersheds | Skill Score (%) | |
---|---|---|
Han River | # 1001 | 37.16 |
# 1002 | 33.10 | |
# 1012 | 36.14 | |
# 1017 | 74.95 | |
Nakdong River | # 2011 | 46.85 |
# 2014 | 52.86 | |
# 2017 | −223.20 | |
Geum River | # 3001 | 12.74 |
# 3009 | 24.36 | |
# 3011 | 24.29 | |
# 3012 | 70.51 | |
# 3014 | 88.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.W.; Lee, J.-Y.; Park, D.-H.; Kim, T.-W. Evaluation of Future Flood Risk According to RCP Scenarios Using a Regional Flood Frequency Analysis for Ungauged Watersheds. Water 2019, 11, 992. https://doi.org/10.3390/w11050992
Kim NW, Lee J-Y, Park D-H, Kim T-W. Evaluation of Future Flood Risk According to RCP Scenarios Using a Regional Flood Frequency Analysis for Ungauged Watersheds. Water. 2019; 11(5):992. https://doi.org/10.3390/w11050992
Chicago/Turabian StyleKim, Nam Won, Jin-Young Lee, Dong-Hyeok Park, and Tae-Woong Kim. 2019. "Evaluation of Future Flood Risk According to RCP Scenarios Using a Regional Flood Frequency Analysis for Ungauged Watersheds" Water 11, no. 5: 992. https://doi.org/10.3390/w11050992
APA StyleKim, N. W., Lee, J. -Y., Park, D. -H., & Kim, T. -W. (2019). Evaluation of Future Flood Risk According to RCP Scenarios Using a Regional Flood Frequency Analysis for Ungauged Watersheds. Water, 11(5), 992. https://doi.org/10.3390/w11050992