Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model
SWAT Snowmelt Algorithm
2.3. Dataset
2.3.1. Hydro-Meteorological Data
2.3.2. Land Use and Glacier Data
2.3.3. Soil Data
2.4. Model Setup
2.5. Degree-Day Model (DDM)
2.6. Equilibrium Line Altitude (ELA)
2.7. Glacier Mass Balance (GMB)
2.8. Lake Water Balance
2.9. Evaluation of SWAT Model
3. Results
3.1. Calibration and Validation of SWAT Model at the Gauged Subbasins
3.2. Validation of the SWAT Model with Observed Lake Levels
3.3. Hydrology of the Nam Co Basin
3.4. Spatial Variations of Water Balance Components at the Subbasin Level
3.5. Variations in the Water Balance of Nam Co Lake at a Temporal Scale
3.6. Temporal Variations of Snow and Glacier Melt
3.7. Relative Contribution of Precipitation and Glacier Melt to Nam Co Lake
3.8. Glacier Mass Balance (GMB)
3.8.1. Annual Glacier Mass Balance of the Zhadang Glacier
3.8.2. Annual Glacier Mass Balance of the Nam Co Basin Glaciers
3.8.3. Elevation Wise Glacier Mass Balance of the Nam Co Basin Glaciers
4. Discussion
5. Conclusions
- We conclude that upscaling of calibrated parameters from the subbasin scale to basin scale produced reliable results and this technique could be used where there is a problem of input data scarcity required to force the hydrological model. The limitation of this binary approach is that the two basins or subbasins selected for upscaling should have similar topographic and climatic features to achieve satisfactory results.
- Water balance analysis unveiled that rapid and substantial growth of the Nam Co Lake was associated with precipitation while glacier melt proved as a secondary driver for lake expansion. However, the dominance of precipitation and glacier melt interchanged between the years. Moreover, the average annual relative contributions of precipitation and glacier melt were 57% (or 667 mm), and 42% (or 502 mm), respectively.
- Further analysis disclosed that the mean total summer amount of water generated in glaciated and non-glaciated subbasins flowing into the Nam Co Lake was 74% and 26%, respectively.
- Negative GMB of the Nam Co basin was found from 2007 to 2014 with an average annual value of −150.9 mm w.e. Negative GMB was evidence of accelerated glacier melting which had increased substantially due to rise in average annual temperature of the Nam Co basin.
- All of the analyses showed that rapid lake growth, such as with Nam Co, is a proxy indicator of climate change in the TP. The choice of DDM, along with the SWAT model in data scarce regions could prove reasonable in terms of simulation, water balance, and GMB analyses.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoelzle, M.; Chinn, T.; Stumm, D.; Paul, F.; Zemp, M.; Haeberli, W. The application of glacier inventory data for estimating past climate change effects on mountain glaciers: A comparison between the European Alps and the Southern Alps of New Zealand. Glob. Planet. Chang. 2007, 56, 69–82. [Google Scholar] [CrossRef]
- Genxu, W.; Yuanshou, L.; Yibo, W.; Qingbo, W. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 2008, 143, 143–152. [Google Scholar] [CrossRef]
- Owen, L.A.; Thackray, G.; Anderson, R.S.; Briner, J.; Kaufman, D.; Roe, G.; Pfeffer, W.; Yi, C. Integrated research on mountain glaciers: Current status, priorities and future prospects. Geomorphology 2009, 103, 158–171. [Google Scholar] [CrossRef]
- Ma, R.H.; Yang, G.S.; Duan, H.T.; Jiang, J.H.; Wang, S.M.; Feng, X.Z.; Li, A.N.; Kong, F.X.; Xue, B.; Wu, J.L.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, H.; Zhang, B.; Chen, D.; Lei, L. Long-Term Changes of Lake Level and Water Budget in the Nam Co Lake Basin, Central Tibetan Plateau. J. Hydrometeorol. 2014, 15, 1312–1322. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Xie, H.J.; Yao, T.D.; Kang, S.C. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chin. Sci. Bull. 2013, 58, 3815–3829. [Google Scholar] [CrossRef] [Green Version]
- Redway, J.W. Oscillations of Lake Levels and Changes of Climate. Ecology 1924, 5, 149–152. [Google Scholar] [CrossRef]
- Hartmann, H.C. Climate change impacts on Laurentian Great Lakes levels. Clim. Chang. 1990, 17, 49–67. [Google Scholar] [CrossRef]
- Jones, R.N.; McMahon, T.A.; Bowler, J.M. Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840-1990). J. Hydrol. 2001, 246, 159–180. [Google Scholar] [CrossRef]
- Nováky, B. Climate change impact on water balance of Lake Balaton. Water Sci. Technol. 2008, 58, 1865–1869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wu, Y.; Zhu, L.; Wang, J.; Li, J.; Chen, D. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. J. Hydrol. 2011, 405, 161–170. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.; Wang, Y.; Ju, J.; Xie, M.; Daut, G. Comparisons between the chemical compositions of lake water, inflowing river water, and lake sediment in Nam Co, central Tibetan Plateau, China and their controlling mechanisms. J. Great Lakes Res. 2010, 36, 587–595. [Google Scholar] [CrossRef]
- Duo, B.; Baciren, B.; Ba, L.; Caiyun, W.; Tao, C. The response of water level of selin co to climate change during 1975–2008. Acta Geogr. Sin. 2010, 65, 313–319. [Google Scholar]
- Zhu, L.P.; Xie, M.P.; Wu, Y.H. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Bird, B.W.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Liu, J.; Kang, S.; Gong, T.; Lu, A. Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet. Hydrol. Earth Syst. Sci. 2010, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Kang, S.; Chen, F.; Joswiak, D.R. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. J. Hydrol. 2013, 491, 89–99. [Google Scholar] [CrossRef]
- Gao, T.; Kang, S.; Krause, P.; Cuo, L.; Nepal, S. A test of J2000 model in a glacierized catchment in the central Tibetan Plateau. Environ. Earth Sci. 2012, 65, 1651–1659. [Google Scholar] [CrossRef]
- Biskop, S.; Maussion, F.; Krause, P.; Fink, M. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau. Hydrol. Earth Syst. Sci. 2016, 20, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.Q.; Kang, S.C.; Gao, T.G.; Zhang, G.S. Response of Zhadang Glacier runoff in Nam Co Basin, Tibet, to changes in air temperature and precipitation form. Chin. Sci. Bull. 2010, 55, 2103–2110. [Google Scholar] [CrossRef]
- Gao, T.; Kang, S.; Lan, C.; Zhang, T.; Zhang, G.; Zhang, Y.; Sillanpää, M. Simulation and analysis of glacier runoff and mass balance in the Nam Co basin, southern Tibetan Plateau. J. Glaciol. 2015, 61, 447–460. [Google Scholar] [CrossRef]
- Li, B.; Yu, Z.; Liang, Z.; Acharya, K. Hydrologic response of a high altitude glacierized basin in the central tibetan plateau. Glob. Planet. Chang. 2014, 118, 69–84. [Google Scholar] [CrossRef]
- Zhang, G.; Kang, S.; Fujita, K.; Huintjes, E.; Xu, J.; Yamazaki, T.; Haginoya, S.; Wei, Y.; Scherer, D.; Schneider, C.; et al. Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. J. Glaciol. 2013, 59, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Kang, S.; Cuo, L.; Qu, B. Modeling hydrological process in a glacier basin on the central Tibetan Plateau with a distributed hydrology soil vegetation model. J. Geophys. Res. 2016, 121, 9521–9539. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Kang, S.C.; Zhang, G.S.; Anjum, M.N.; Zaman, M.; Zhang, Y.Q. Evaluation of SWAT Model performance on glaciated and non-glaciated subbasins of Nam Co Lake, Southern Tibetan Plateau, China. J. Mt. Sci. 2019, 16, 1075–1097. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, S.; Ding, Y.J.; Wang, J.; Han, H.; Xu, J.; Zhao, C.; Guo, W.; Shangguan, D. Modeling Hydrologic Response to Climate Change and Shrinking Glaciers in the Highly Glacierized Kunma Like River Catchment, Central Tian Shan. J. Hydrometeorol. 2015, 16, 2383–2402. [Google Scholar] [CrossRef]
- Krause, P.; Biskop, S.; Helmschrot, J.; Flügel, W.A.; Kang, S.; Gao, T. Hydrological system analysis and modelling of the Nam Co basin in Tibet. Adv. Geosci. 2010, 27, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X.; Niu, Z.; Luo, Z.; Huang, H.; Sun, F.; Li, X. Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens. Environ. 2013, 132, 131–144. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L. Preliminary study on the field investigation of Nam Co. Annu. Rep. Nam Co Monit. Res. Stn. Multisphere Interact. 2006, 1, 42–46. [Google Scholar]
- Kang, S.; Chen, F.; Ye, Q.; Jing, Z.; Qin, D.; Ren, J. Glacier retreating dramatically on the Mt. Nyainqentanglha during the last 40 years. J. Glaciol. Geocryol. 2007, 29, 869–873. [Google Scholar]
- Dagang, Z.; Xiangang, M.; Xitao, Z.; Zhao-gang, S.; Chao-bin, Y.; Zhi-bang, M.; ZHONG-hai, W.; Jian-ping, W. Evolution and climatic change of nam co of tibet and an ancient large lake in the northern tibetan plateau since the late pleistocene. Geol. China 2004, 31, 269. [Google Scholar]
- Stehr, A.; Debels, P.; ARUMI, J.L.; Romero, F.; Alcayaga, H. Combining the soil and water assessment tool (swat) and modis imagery to estimate monthly flows in a data-scarce chilean andean basin. Hydrol. Sci. J. 2009, 54, 1053–1067. [Google Scholar] [CrossRef]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. Arcswat interface for swat 2005. In User’s Guide, Blackland Research Center; Texas Agricultural Experiment Station: Temple, TX, USA, 2007. [Google Scholar]
- Grusson, Y.; Sun, X.; Gascoin, S.; Sauvage, S.; Raghavan, S.; Anctil, F.; Sáchez-Pérez, J.M. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. J. Hydrol. 2015, 531, 574–588. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.E.A.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual. Version 2000, Blackland Research Center; Texas Agricultural Experiment Station: Temple, TX, USA.
- Gitau, M.W.; Chaubey, I. Regionalization of SWAT model parameters for use in ungauged watersheds. Water 2010, 2, 849–871. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. J. Hydrol. 2013, 477, 72–85. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D. Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the westerlies dominated belt, northern Pakistan. Atmos. Res. 2019, 227, 233–248. [Google Scholar] [CrossRef]
- Sperna Weiland, F.C.; Van Beek, L.P.H.; Kwadijk, J.C.J.; Bierkens, M.F.P. The ability of a GCM-forced hydrological model to reproduce global discharge variability. Hydrol. Earth Syst. Sci. 2010, 14, 1595–1621. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.Y.Y.; Steenburgh, W.J. Strengths and Weaknesses of MOS, Running-Mean Bias Removal, and Kalman Filter Techniques for Improving Model Forecasts over the Western United States. Weather Forecast. 2007, 22, 1304–1318. [Google Scholar] [CrossRef]
- Guo, W.; Xu, J.; Liu, S.; ShangGuan, D.; Wu, L.; Yao, X.; Zhao, J.; Liu, Q.; Jiang, Z.; Li, P.; et al. The second glacier inventory dataset of china (version 1.0). Cold Arid Reg. Sci. Data Cent Lanzhou 2014. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Mukhopadhyay, B.; Dutta, A. A Stream Water Availability Model of Upper Indus Basin Based on a Topologic Model and Global Climatic Datasets. Water Resour. Manag. 2010, 24, 4403–4443. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, hare soil and grass. Proc. R. Soc. Lond. Ser A. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs-A User Manual, Department of Systems Analysis, Intergrated Assessment and Modelling (SIAM), EAWAG. Swiss Federal Institute of Aqualtic Science and Technology, Duebendorf, Switzerland. User Man. 2015, 100, s00402–s009. [Google Scholar]
- Garee, K.; Chen, X.; Bao, A.; Wang, Y.; Meng, F. Hydrological modeling of the upper indus basin: A case study from a high-altitude glacierized catchment Hunza. Water 2017, 9, 17. [Google Scholar] [CrossRef]
- Rahman, K.; Maringanti, C.; Beniston, M.; Widmer, F.; Abbaspour, K.; Lehmann, A. Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland. Water Resour. Manag. 2013, 27, 323–339. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Zou, S.; Yang, L. Assessing variation in water balance components in mountainous Inland River Basin experiencing climate change. Water 2016, 8, 472. [Google Scholar] [CrossRef]
- Kang, E.; Cheng, G.; Lan, Y.; Jin, H. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes. Sci. China Ser. D 1999, 42, 52–63. [Google Scholar] [CrossRef]
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Zemp, M. Glossary of glacier mass balance and related terms, IHP-VII Technical documents in hydrolo. Polar Rec. Gr. Br. 2012, 48, 2012. [Google Scholar] [CrossRef]
- Pellitero, R.; Rea, B.R.; Spagnolo, M.; Bakke, J.; Hughes, P.; Ivy-Ochs, S.; Lukas, S.; Ribolini, A. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Comput. Geosci. 2015, 82, 55–62. [Google Scholar] [CrossRef]
- Osmaston, H. Models for the estimation of firnlines of present and pleistocene glaciers. In Processes in Physical and Human Geography, Bristol Essays, 218; Peel, R.F., Chisholm, M.D.I., Haggett, P., Eds.; University of Bristol Press: Bristol, UK, 1975; p. 245. [Google Scholar]
- Furbish, D.; Andrews, J. The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. J. Glaciol. 1984, 30, 199–211. [Google Scholar] [CrossRef]
- Osmaston, H. Estimates of glacier equilibrium line altitudes by the Area × Altitude, the Area × Altitude Balance Ratio and the Area × Altitude Balance Index methods and their validation. Quat. Int. 2005, 138–139, 22–31. [Google Scholar] [CrossRef]
- Benn, D.I.; Lehmkuhal, F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quat. Int. 2000, 65–66, 15–29. [Google Scholar] [CrossRef]
- Anderson, J.T.; Davis, C.A. Wetland Techniques: Volume 1: Foundations; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kang, S.; Chen, F.; Gao, T.; Zhang, Y.; Yang, W.; Yu, W.; Yao, T. Early onset of rainy season suppresses glacier melt: A case study on Zhadang glacier, Tibetan Plateau. J. Glaciol. 2009, 55, 755–758. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Niu, G.Y.; Zhang, Y.; Zhang, T.; Wang, B.; Wu, Y. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. J. Hydrol. 2016, 537, 27–35. [Google Scholar] [CrossRef]
- Kropáček, J.; Braun, A.; Kang, S.; Feng, C.; Ye, Q.; Hochschild, V. Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 3–11. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, L. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000. J. Geogr. Sci. 2008, 18, 177–189. [Google Scholar] [CrossRef]
- Chen, F.; Kang, S.; Zhang, Y.; You, Q. Glaciers and lake change in response to climate change in the nam co basin, tibet. J. Mt. Sci. 2009, 27, 641–647. [Google Scholar]
Data Type | Data Description | Scale and Time Domain | Data Source |
---|---|---|---|
DEM | Aster GDEM | 90 × 90 m | ASTER-GDEM from USGS website |
DEM | DEM vertical standard deviation/Error | 277.15 m | ASTER-GDEM from USGS website |
Land use | The China Archive | 1 × 1 km (2005) | IGSNRR, http://www.igsnrr.ac.cn |
Soil | Harmonized World Soil Database v 1.2 | 90 × 90 m | http://webarchive.iiasa.ac.at |
Meteorological Data | NAMOR, Zhadang, Baoji, Deqing | Daily (2007–2015) | Third Pole Environment, ITP, CAS |
Discharge | Zhadang, Quqaqie, Niyaqu | Daily (2007–2014) | Third Pole Environment, ITP, CAS |
Lake Level | Nam Co lake levels (m) | Daily (2007–2013) | Third Pole Environment, ITP, CAS |
Glacier | Nam Co basin glacier data | 2014 | China Second Glacier Inventory (1.0) |
Reanalysis Data | Precipitation | Daily (0.25°) | TRMM_3B42RT |
Reanalysis Data | Temperature, relative humidity, wind speed, solar radiation | Daily (0.125°) | Era-Interim |
Parameter | Description | Adjusted for Glaciated Subbasins | Adjusted for Non-Glaciated Subbasins |
---|---|---|---|
v_CH_K2.rte | Effective hydraulic conductivity | 91.32 | 56.26 |
v_ALPHA_BNK.rte | Baseflow alpha factor for bank storage | 0.83 | 0.23 |
r_SOL_BD.sol | Moist bulk density (g/cm−3) | 0.08 | 0.13 |
r_SOL_K.sol | Saturated hydraulic conductivity (mm/h) | 0.44 | 0.53 |
r_SOL_AWC.sol | Soil available water capacity (mm H2O/mm soil) | 0.11 | 0.19 |
v_SMFMN.bsn | Minimum melt rate for snow during the year (occurs on winter solstice) H2O/°C-day) | 2.45 | 3.51 |
v_SMFMX.bsn | Maximum melt rate for snow during the year (occurs on the summer solstice). (mm H2O/°C-day) | 7.41 | 8.23 |
v_TIMP.bsn | Snowpack temperature lag factor | 0.299 | 0.52 |
v_TLPAS.sub | Temperature lapse rate (°C/km) | −5.7 | −5.7 |
v_SMTMP.bsn | Snow melt base temperature (˚C) | −1.74 | −1.46 |
v_SFTMP.bsn | Snowfall temperature (°C) | −2.39 | −3.1 |
v_PLAPS.sub | Precipitation lapse rate (mm H2O/km) | 105.4 | 105.4 |
v_SNOCOVMX.bsn | Minimum snow water content that corresponds to 100% snow cover | 302.81 | 348 |
v_SNO50COV.bsn | Snow water equivalent that corresponds to 50% snow cover. | 0.59 | 0.8 |
v_ESCO.hru | Soil evaporation compensation factor | 0.8 | 0.77 |
v_CH_N2.rte | Manning’s roughness coefficient | 0.14 | 0.035 |
v_GW_REVAP.gw | coefficient for groundwater re-evaporation | 0.17 | 0.14 |
v_GW_DELAY.gw | Groundwater delay (days) | 108.36 | 151.76 |
v_ALPHA_BF.gw | Base flow alpha factor (days) | 0.52 | 0.45 |
r_CN2.mgt | Initial SCS runoff curve number for moisture condition II | 0.095 | 0.07 |
v_GWQMN.gw | Threshold depth in shallow aquifer for return flow (mm) | 0.72 | 0.99 |
v_RCHRG_DP.gw | Percolation from deep aquifer | 0.28 | 0.15 |
Model Parameters | Description | Unit | Values | Reference |
---|---|---|---|---|
Degree-day factor for snow | mm °C−1 day−1 | 5.06 | [26] | |
Degree-day factor for ice | mm °C−1 day−1 | 10.30 | [26] | |
Tmx | Maximum temperature at which snow can fall | °C | 2.0 | [26,28] |
Tmn | Minimum temperature at which rain can fall | °C | −2.0 | [26,28] |
F_ASP or | Factor quantifying the aspect | fraction | 0.3 | [28] |
CWH | Water holding capacity of snow | fraction | 0.1 | [28] |
CFRC | Refreezing coefficient | fraction | 0.1 | [28] |
TT | Threshold temperature | °C | 0.0 | [28] |
RATION_ICE | DDFice/DDFsnow | fraction | 2.04 | Current study |
RHO_ICE | Ice density | Kg/m3 | 920 | [28] |
RHOW | Water density | Kg/m3 | 1000 | [28] |
Year | Zhadang Mass Balance (m w.e.) | Comparison with Other Studies | |
---|---|---|---|
2007 | −2.03 | −0.789 | [61] |
2008 | −0.506 | 0.223 | [61] |
2009 | −4.45 | ||
2010 | −2.826 | ||
2011 | −1.106 | −0.98 | [25] |
2012 | −3.329 | −2.58 | [25] |
2013 | −2.74 | −1.16 | [25] |
2014 | −2.16 | −1.69 | [25] |
Year | Mean Annual GMB of the Nam Co basin (m w.e.) |
---|---|
2006/2007 | −0.069 |
2007/2008 | −0.032 |
2008/2009 | −0.104 |
2009/2010 | −0.080 |
2010/2011 | −0.050 |
2011/2012 | −0.102 |
2012/2013 | −0.077 |
2013/2014 | −0.159 |
Average | −0.151 |
Year/Elevation Belts | A(5384–5484) | B(5484–5584) | C(5584–5684) | D(5684–5784) | E(5784–5884) | F(5884–5984) | G(5984–6084) | H(6084–6184) | I(6184–6284) | J(6284–7019) |
---|---|---|---|---|---|---|---|---|---|---|
2006/2007 | −4.04 | −3.14 | −2.29 | −1.48 | −0.77 | −0.16 | 0.24 | 0.40 | 0.50 | 0.65 |
2007/2008 | −2.55 | −1.80 | −1.14 | −0.58 | −0.13 | 0.11 | 0.29 | 0.36 | 0.40 | 0.42 |
2008/2009 | −4.40 | −3.64 | −2.91 | −2.23 | −1.56 | −0.90 | −0.40 | 0.00 | 0.31 | 0.54 |
2009/2010 | −3.81 | −3.04 | −2.33 | −1.74 | −1.17 | −0.63 | −0.16 | 0.20 | 0.39 | 0.60 |
2010/2011 | −3.43 | −2.64 | −1.89 | −1.16 | −0.45 | 0.10 | 0.39 | 0.53 | 0.60 | 0.62 |
2011/2012 | −4.54 | −3.72 | −2.94 | −2.16 | −1.43 | −0.76 | −0.20 | 0.15 | 0.31 | 0.39 |
2012/2013 | −3.91 | −3.19 | −2.48 | −1.77 | −1.06 | −0.44 | 0.09 | 0.36 | 0.50 | 0.58 |
2013/2014 | −5.90 | −4.99 | −4.08 | −3.20 | −2.32 | −1.49 | −0.85 | −0.43 | −0.17 | 0.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, M.; Kang, S.; Zhang, G.; Saifullah, M.; Anjum, M.N.; Ali, A.F. Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model. Water 2019, 11, 1383. https://doi.org/10.3390/w11071383
Adnan M, Kang S, Zhang G, Saifullah M, Anjum MN, Ali AF. Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model. Water. 2019; 11(7):1383. https://doi.org/10.3390/w11071383
Chicago/Turabian StyleAdnan, Muhammad, Shichang Kang, Guoshuai Zhang, Muhammad Saifullah, Muhammad Naveed Anjum, and Ayaz Fateh Ali. 2019. "Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model" Water 11, no. 7: 1383. https://doi.org/10.3390/w11071383
APA StyleAdnan, M., Kang, S., Zhang, G., Saifullah, M., Anjum, M. N., & Ali, A. F. (2019). Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model. Water, 11(7), 1383. https://doi.org/10.3390/w11071383