Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landslide Inventory Mapping
2.2. Landslide Conditioning Factors
2.2.1. Slope Aspect
2.2.2. Curvature
2.2.3. Elevation
2.2.4. Distance from Fault
2.2.5. Lithology
2.2.6. NDVI
2.2.7. Distance from River
2.2.8. Distance from Road
2.2.9. Slope Angle
2.2.10. Land Use
2.3. Bivariate Models
2.3.1. Frequency Ratio (FR)
2.3.2. Shannon Entropy (SE)
2.3.3. Weights of Evidence (WoE)
2.3.4. Evidential Belief Function (EBF)
2.4. Model Verification
3. Results
3.1. Multicollinearity Diagnosis
3.2. FR Model
3.3. SE Model
3.4. WoE Model
3.5. EBF Model
3.6. Assessment and Comparison of the Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chakraborty, S.; Pradhan, R. Development of GIS based landslide information system for the region of East Sikkim. Int. J. Comput. Appl. 2012, 49, 5–9. [Google Scholar] [CrossRef]
- Goetz, J.N.; Guthrie, R.H.; Brenning, A. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 2011, 129, 376–386. [Google Scholar] [CrossRef]
- Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T.; Akgun, A. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 2014, 7, 725–742. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Pourghasemi, H.; Moradi, H.; Aghda, S.F. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards 2013, 69, 749–779. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Mohammady, M.; Pradhan, B. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 2012, 97, 71–84. [Google Scholar] [CrossRef]
- Kanungo, D.; Arora, M.; Sarkar, S.; Gupta, R. Landslide Susceptibility Zonation (LSZ) Mapping—A Review. J. South Asia Disaster Stud. 2009, 2, 81–105. [Google Scholar]
- Van Den Eeckhaut, M.; Vanwalleghem, T.; Poesen, J.; Govers, G.; Verstraeten, G.; Vandekerckhove, L. Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium). Geomorphology 2006, 76, 392–410. [Google Scholar] [CrossRef]
- Monsieurs, E.; Dewitte, O.; Demoulin, A. A susceptibility-based rainfall threshold approach for landslide occurrence. Nat. Hazard Earth Syst. Sci. 2019, 19, 775–789. [Google Scholar] [CrossRef] [Green Version]
- Holec, J.; Bednarik, M.; Šabo, M.; Minár, J.; Yilmaz, I.; Marschalko, M. A small-scale landslide susceptibility assessment for the territory of Western Carpathians. Nat. Hazards 2013, 69, 1081–1107. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihri, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Masuda, T.; Nishino, K. GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol. 2008, 54, 311–324. [Google Scholar] [CrossRef]
- Hjort, J.; Luoto, M. 2.6 Statistical Methods for Geomorphic Distribution Modeling. In Treatise on Geomorphology; Academic Press: San Diego, CA, USA, 2013; pp. 59–73. [Google Scholar]
- Tsangaratos, P.; Ilia, I.; Rozos, D. Case Event System for Landslide Susceptibility Analysis. In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 585–593. [Google Scholar]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. Application of an evidential belief function model in landslide susceptibility mapping. Comput. Geosci. 2012, 44, 120–135. [Google Scholar] [CrossRef]
- Pham, B.T.; Tien Bui, D.; Indra, P.; Dholakia, M. Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS–based statistical approach of frequency ratio method. Int. J. Eng. Res. Technol. 2015, 4, 338–344. [Google Scholar]
- Youssef, A.M.; Pradhan, B.; Jebur, M.N.; El-Harbi, H.M. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ. Earth Sci. 2015, 73, 3745–3761. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.-H.; Lee, M.-J.; Won, J.-S. Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environ. Geol. 2003, 44, 820–833. [Google Scholar] [CrossRef]
- Pradhan, B. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Sens. 2010, 38, 301–320. [Google Scholar] [CrossRef]
- Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. [Google Scholar] [CrossRef]
- Oh, H.-J.; Pradhan, B. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci. 2011, 37, 1264–1276. [Google Scholar] [CrossRef]
- Sezer, E.A.; Pradhan, B.; Gokceoglu, C. Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst. Appl. 2011, 38, 8208–8219. [Google Scholar] [CrossRef]
- Akgun, A.; Kıncal, C.; Pradhan, B. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ. Monit. Assess. 2012, 184, 5453–5470. [Google Scholar] [CrossRef] [PubMed]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2102, 63, 965–996. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.-J.; Lee, J.H. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 2014, 114, 21–36. [Google Scholar] [CrossRef]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ. Monit. Assess. 2016, 188, 656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cai, Y.; Zheng, Z.; Zhen, J.; Liu, Y.; Huang, K. Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China. Catena 2016, 142, 233–244. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kerle, N. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ. Earth Sci. 2016, 75, 185. [Google Scholar] [CrossRef]
- Thai Pham, B.; Bui, D.T.; Prakash, I. Landslide susceptibility modelling using different advanced decision trees methods. Civ. Eng. Environ. Syst. 2018, 35, 139–157. [Google Scholar] [CrossRef]
- Chung, C.-J.F.; Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Ercanoglu, M.; Gokceoglu, C. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ. Geol. 2002, 41, 720–730. [Google Scholar]
- Sadr, M.P.; Maghsoudi, A.; Saljoughi, B.S. Landslide susceptibility mapping of Komroud sub-basin using fuzzy logic approach. Geodyn. Res. Int. Bull. 2014, 2, XVI–XXVIII. [Google Scholar]
- Sidle, R.C.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; Water Resources Monograph Series; American Geophysical Union: Washington, DC, USA, 2006. [Google Scholar]
- Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Bui, D.T.; Rezaie, F.; Lee, S. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena 2019, 175, 430–445. [Google Scholar] [CrossRef]
- Qingfeng, H.; Zhihao, X.; Shaojun, L.; Renwei, L.; Shuai, Z.; Nianqin, W.; Pham, B.T.; Wei, C. Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling. Entropy 2019, 21(2), 106. [Google Scholar] [Green Version]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Pham, B.T.; Prakash, I.; Khosravi, K.; Chapi, K.; Trinh, P.T.; Nog, T.Q.; Hossini, S.V.; Bui, D.T. A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto Int. 2018. [Google Scholar] [CrossRef]
- Shirzadi, A.; Soliamani, K.; Habibnejhad, M.; Kavian, A.; Chapi, K.; Shahabi, H.; Chen, W.; Khosravi, K.; Thai Pham, B.; Pradhan, B.; et al. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors 2018, 18, 3777. [Google Scholar] [CrossRef]
- Thai Pham, B.; Prakash, I.; Dou, J.; Singh, S.K.; Trinh, P.T.; Tran, H.T.; Le, T.M.; Phong, T.V.; Khoi, D.K.; Shirzadi, A.; et al. A Novel Hybrid Approach of Landslide Susceptibility Modeling Using Rotation Forest Ensemble and Different Base Classifiers. Geocarto Int. 2018, 1–38. [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yishida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Hong, H.; Naghibi, S.A.; Pourghasemi, H.R.; Pradhan, B. GIS-based landslide spatial modeling in Ganzhou City, China. Arab. J. Geosci. 2016, 9, 112. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Pham, B.T.; Vv, B.T.; Prakash, I.; Jha, S.; Shahabi, H.; Shirzadi, A.; Ba, D.N.; Kumar, R.; Chatterjee, J.M.; et al. Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests 2019, 10, 157. [Google Scholar] [CrossRef]
- Binh Thai, P.; Dieu, T.B.; Indra, P. Application of Classification and Regression Trees for Spatial Prediction of Rainfall Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS. In Climate Change, Extreme Events and Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2017; pp. 159–170. [Google Scholar]
- Tuan, T.; Dan, N. Landslide susceptibility mapping and zoning in the Son La hydropower catchment area using the analytical hierarchy process. J. Sci. Earth 2012, 3, 223–232. [Google Scholar]
- Fayez , L.; Thai Pham, B.; Solanki, H.A.; Pazhman, D.; Dholakia, M.B.; Khalid, M.; Prakash, I. Application of Frequency Ratio Model for the Development of Landslide Susceptibility Mapping at Part of Uttarakhand State, India. Int. J. Appl. Eng. Res. 2018, 13, 6846–6854. [Google Scholar]
- Pham, B.T. A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility. J. Geol. Soc. India 2018, 91, 355–362. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Jaafari, A.; Bui, D.T. Spatial prediction of rainfall-induced landslides using aggregating one-dependence estimators classifier. J. Indian Soc. Remote Sens. 2018, 46, 1457–1470. [Google Scholar] [CrossRef]
- Salvatici, T.; Tofani, V.; Rossi, G.; D’Ambrosio, M.; Tacconi Stefanelli, C.; Benedetta Masi, E.; Rosi, A.; Pazzi, V.; Vannocci, P.; Petrolo, M.; et al. Application of a physically based model to forecast shallow. Nat. Hazards Earth Syst. Sci. 2018, 18, 1919–1935. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F. Geographic Information Systems for Geoscientists: Modelling with GIS vol 13; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Lee, S.; Talib, J.A. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47, 982–990. [Google Scholar] [CrossRef]
- Akgun, A.; Dag, S.; Bulut, F. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ. Geol. 2008, 54, 1127–1143. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Pourghasemi, H.R.; Abdullahi, S. Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS. Geosci. J. 2015, 19, 449–469. [Google Scholar] [CrossRef]
- Wan, S. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng. Geol. 2009, 108, 237–251. [Google Scholar] [CrossRef]
- Bednarik, M.; Magulová, B.; Matys, M.; Marschalko, M. Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study. Phys. Chem. Earth Parts A/B/C 2010, 35, 162–171. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Lee, Y.H.; Tan, X.; Yu, G.; Dai, F. The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling. Environ. Earth Sci. 2012, 66, 1603–1616. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and Lower Probabilities Induced by a Multivalued Mapping. In Classic Works of the Dempster-Shafer Theory of Belief Functions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 57–72. [Google Scholar]
- Park, N.-W. Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ. Earth Sci. 2011, 62, 367–376. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M. Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geol. Rev. 2003, 22, 117–132. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Pham, B.T. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. Ecol. Inform. 2018, 43, 200–211. [Google Scholar] [CrossRef]
- Tien Bui, D.; Shahabi, H.; Shiezadi, A.; Chapi, K.; Honang, N.-D.; Pham, B.T.; Bui, Q.-T.; Tran, C.-T.; Panahi, M.; Bin Ahmad, B.; et al. A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sens. 2018, 10, 1538. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Pradhan, B. Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ. Ecol. Stat. 2011, 18, 471–493. [Google Scholar] [CrossRef]
- Pradhan, B.; Oh, H.; Buchroithner, M. Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomat. Nat. Hazards Risk 2010, 1, 199–223. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 2012, 96, 28–40. [Google Scholar]
- Nampak, H.; Pradhan, B.; Manap, M.A. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 2014, 513, 283–300. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide Hazard and Risk Assessment. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2006. [Google Scholar]
- Pham, B.T.; Khosravi, K.; Prakhsh, I. Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India. Environ. Process. 2017, 4, 711–730. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, X.; Shahabi, H.; Shirzadi, A.; Khosravi, K.; Chai, H.; Zhang, S.; Zhang, L.; Ma, J.; Chen, Y.; et al. Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto Int. 2019. [Google Scholar] [CrossRef]
- Gholami, M.; Ghachkanlu, E.; Khosravi, K.; Pirasteh, S. Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. J. Earth Syst. Sci. 2019, 128, 42. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Shahabi, H.; Omidvar, E.; Shirzadi, A.; Geertsema, A.; Clague, J.; Khosravi, K.; Pradhan, B.; Pham, B.; Chapi, K.; et al. Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sens. 2019, 11, 931. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Zhang, S.; Khosravi, K.; Shirzadi, A.; Chapi, K.; Pham, B.T.; Zhang, T.; Zhang, L.; Chai, H.; et al. Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression. Appl. Sci. 2018, 8, 2540. [Google Scholar] [CrossRef]
- Hung, P.V.; Son, P.Q.; Dung, N.V. The study evaluated arming of risk of landslide in Hoa Binh and Son La reservoir hydropower area on the basis of analyzing high-resolution remote sensing and geographic information systems. Vietnam J. Earth Sci. 2015, 37, 193–203. [Google Scholar]
- Tan, M.T.; Tao, N.V. Studying landslides in Thua Thien—Hue province. Vietnam J. Earth Sci. 2014, 36, 121–130. [Google Scholar] [CrossRef]
- Thom, B.V.; Son, P.Q.; Hung, P.V.; Anh, N.T.V. Research assessment landslide and sedimentation of Hoa Binh hydropower reservoir. Vietnam J. Earth Sci. 2016, 38, 131–142. [Google Scholar]
No | Code | Lithology |
---|---|---|
1 | Et.l | Andesitic volcanic tuff |
2 | PLQmc | Conglomerate, Sandston, siltstone, Silty Marl |
3 | JL2 | Lime |
4 | K11 | Hyporite bearing limestone (Senonian) |
5 | K2l | Thick-bedded to massive limestone (maastrichtian) |
6 | K2m | Lime and Quinasine |
7 | l | Marl, shale and detritic limestone |
8 | K2Pems | Marl, shale, limestone and mixture of conglomerate |
9 | M23m,s,l | Marl, calcareous sandstone, sandy limestone and minor conglomerate |
10 | M2msl | Marl and calcareous sandstone |
11 | Mg | Red conglomerate and sandstone |
12 | Mm2 | Marl and calcareous |
13 | Mms | Marl, calcareous sandstone and sandy limestone |
14 | Pel | Medium to thick-bedded limestone |
15 | Pelm | Medium to thick-bedded limestone |
16 | Pemls | Dark grey medium-bedded to massive limestone |
17 | Plc | Polymictic conglomerate and sandstone |
18 | PLQcs | Conglomerate, Sandston and siltstone |
19 | Pr | Fusulina limestone, dolomitic limestone |
20 | Q2 | New Alluvial |
21 | Qal | Loose alluvium in the river channels |
22 | TR3l,sh | Shale, Lime and Dolomite |
Model | Collinearity Statistics | |
---|---|---|
Tolerance | VIF | |
Slope aspect | 0.353 | 2.833 |
Curvature | 0.300 | 3.331 |
Altitude (m) | 0.806 | 1.240 |
Distance from fault | 0.774 | 1.293 |
NDVI | 0.332 | 3.016 |
Lithology | 0.784 | 1.275 |
Distance from river (m) | 0.714 | 1.401 |
Distance from road (m) | 0.876 | 1.142 |
Slope angle (degree) | ||
Land use | 0.377 | 2.656 |
Landslide Number | Percent of Landslide | Number of Pixels | Percent of Pixels | FR | SE | WoE | BEL | DIS | UNC | PLS | |
---|---|---|---|---|---|---|---|---|---|---|---|
Factors | |||||||||||
Aspect | |||||||||||
Flat | 0 | 0.00 | 32625 | 2.04 | 0.00 | 0.14 | None | 0.00 | 0.20 | 0.795 | 0.79 |
North | 33 | 44.00 | 448162 | 28.05 | 1.57 | 3.01 | 0.39 | 0.15 | 0.448 | 0.84 | |
East | 12 | 16.00 | 346063 | 21.66 | 0.74 | −1.18 | 0.18 | 0.21 | 0.598 | 0.78 | |
South | 14 | 18.67 | 387209 | 24.24 | 0.77 | −1.12 | 0.19 | 0.21 | 0.590 | 0.78 | |
West | 16 | 21.33 | 383399 | 24.00 | 0.89 | −0.54 | 0.22 | 0.20 | 0.568 | 0.79 | |
Curvature | |||||||||||
Concave | 8 | 10.67 | 198991 | 12.46 | 0.86 | 0.005 | −0.47 | 0.21 | 0.20 | 0.579 | 0.79 |
Flat | 51 | 68.00 | 1091866 | 68.35 | 0.98 | −0.07 | 0.25 | 0.20 | 0.546 | 0.79 | |
Convex | 16 | 21.33 | 306601 | 19.19 | 1.11 | 0.47 | 0.28 | 0.19 | 0.524 | 0.80 | |
Elevation | |||||||||||
67–300 | 18 | 24.00 | 241935 | 15.14 | 1.58 | 1.804 | 2.11 | 0.40 | 0.18 | 0.421 | 0.82 |
300–600 | 47 | 62.67 | 682822 | 42.74 | 1.47 | 3.39 | 0.37 | 0.13 | 0.499 | 0.86 | |
600–900 | 9 | 12.00 | 490349 | 30.70 | 0.39 | −3.32 | 0.09 | 0.25 | 0.646 | 0.74 | |
900–1200 | 1 | 1.33 | 156384 | 9.79 | 0.14 | −2.07 | 0.03 | 0.22 | 0.746 | 0.78 | |
1200–1500 | 0 | 0.00 | 24115 | 1.51 | 0.00 | None | 0.00 | 0.20 | 0.796 | 0.79 | |
>1500 | 0 | 0.00 | 1853 | 0.12 | 0.00 | None | 0.00 | 0.20 | 0.799 | 0.79 | |
Distance to Fault | |||||||||||
0–100 | 14 | 18.67 | 225014 | 14.09 | 1.33 | 0.035 | 1.13 | 0.33 | 0.19 | 0.476 | 0.81 |
100–200 | 4 | 5.33 | 212463 | 13.30 | 0.40 | −1.95 | 0.10 | 0.21 | 0.680 | 0.78 | |
200–300 | 8 | 10.67 | 190586 | 11.93 | 0.89 | −0.34 | 0.22 | 0.204 | 0.571 | 0.79 | |
300–400 | 7 | 9.33 | 165573 | 10.37 | 0.90 | −0.29 | 0.22 | 0.203 | 0.570 | 0.79 | |
>400 | 42 | 56.00 | 803733 | 50.32 | 1.11 | 0.98 | 0.28 | 0.178 | 0.542 | 0.82 | |
Lithology | |||||||||||
Etl | 0 | 0.00 | 7587 | 0.47 | 0.00 | 40.7 | None | 0.00 | 0.202 | 0.798 | 0.79 |
PLQmc | 0 | 0.00 | 1586 | 0.10 | 0.00 | None | 0.00 | 0.201 | 0.799 | 0.79 | |
DAM | 0 | 0.00 | 1620 | 0.10 | 0.00 | None | 0.00 | 0.201 | 0.799 | 0.79 | |
JL2 | 0 | 0.00 | 2113 | 0.13 | 0.00 | None | 0.00 | 0.201 | 0.799 | 0.79 | |
K11 | 0 | 0.00 | 61922 | 3.88 | 0.00 | None | 0.00 | 0.209 | 0.791 | 0.79 | |
K21 | 0 | 0.00 | 21591 | 1.35 | 0.00 | None | 0.00 | 0.204 | 0.796 | 0.79 | |
K2m | 0 | 0.00 | 48897 | 3.06 | 0.00 | None | 0.00 | 0.207 | 0.793 | 0.79 | |
K2ml | 0 | 0.00 | 17979 | 1.13 | 0.00 | None | 0.00 | 0.203 | 0.797 | 0.79 | |
K2pem, s | 0 | 0.00 | 8257 | 0.52 | 0.00 | None | 0.00 | 0.202 | 0.798 | 0.79 | |
M2,3m, s, l | 0 | 0.00 | 935299 | 58.55 | 0.00 | None | 0.00 | 0.484 | 0.516 | 0.51 | |
M2,3msl | 39 | 52.00 | 857 | 0.05 | 969.2 | 32.75 | 256 | 0.096 | −255 | 0.90 | |
Mg | 0 | 0.00 | 76790 | 4.81 | 0.00 | None | 0.00 | 0.211 | 0.789 | 0.78 | |
Mm2 | 1 | 1.33 | 57006 | 3.57 | 0.37 | −1.00 | 0.09 | 0.205 | 0.700 | 0.79 | |
Mms | 2 | 2.67 | 61271 | 3.84 | 0.70 | −0.52 | 0.17 | 0.203 | 0.621 | 0.79 | |
Pel | 0 | 0.00 | 30284 | 1.90 | 0.00 | None | 0.00 | 0.205 | 0.795 | 0.79 | |
Pelm | 1 | 1.33 | 21613 | 1.35 | 0.99 | −0.01 | 0.24 | 0.201 | 0.551 | 0.79 | |
Pem,l,s | 0 | 0.00 | 4655 | 0.29 | 0.00 | None | 0.000 | 0.201 | 0.799 | 0.79 | |
PLC | 0 | 0.00 | 109490 | 6.85 | 0.00 | None | 0.00 | 0.216 | 0.784 | 0.78 | |
PLQCs | 17 | 22.67 | 11766 | 0.74 | 30.77 | 13.33 | 7.77 | 0.156 | −6.927 | 0.84 | |
Pr | 0 | 0.00 | 2445 | 0.15 | 0.00 | None | 0.00 | 0.201 | 0.799 | 0.79 | |
Q2 | 1 | 1.33 | 85342 | 5.34 | 0.50 | −1.42 | 0.06 | 0.209 | 0.728 | 0.79 | |
Qal | 13 | 17.33 | 19138 | 1.20 | 14.47 | 9.34 | 3.65 | 0.168 | −2.818 | 0.83 | |
TR31, sh | 1 | 1.33 | 9909 | 0.62 | 4.30 | 0.77 | 0.54 | 0.199 | 0.259 | 0.80 | |
NDVI | |||||||||||
<0.15 | 24 | 32.00 | 104780 | 6.56 | 4.88 | 0.57 | 7.69 | 1.23 | 0.146 | −0.376 | 0.85 |
0.15–0.3 | 22 | 29.33 | 116634 | 7.30 | 4.02 | 6.55 | 1.01 | 0.153 | −0.166 | 0.84 | |
0.3–0.45 | 10 | 13.33 | 210087 | 13.15 | 1.01 | 0.05 | 0.25 | 0.200 | 0.544 | 0.80 | |
0.45–0.55 | 13 | 17.33 | 543431 | 34.02 | 0.51 | −2.95 | 0.12 | 0.252 | 0.620 | 0.74 | |
>0.55 | 6 | 8.00 | 622515 | 38.97 | 0.21 | −4.68 | 0.05 | 0.303 | 0.646 | 0.69 | |
Distance to River | |||||||||||
0–100 | 13 | 17.33 | 157133 | 9.84 | 1.76 | 0.06 | 2.14 | 0.44 | 0.184 | 0.372 | 0.81 |
100–200 | 15 | 20.00 | 168234 | 10.53 | 1.90 | 2.61 | 0.47 | 0.180 | 0.342 | 0.82 | |
200–300 | 9 | 12.00 | 182699 | 11.44 | 1.05 | 0.15 | 0.26 | 0.200 | 0.536 | 0.80 | |
300–400 | 15 | 20.00 | 196794 | 12.32 | 1.62 | 2.00 | 0.40 | 0.183 | 0.407 | 0.81 | |
>400 | 23 | 30.67 | 892509 | 55.87 | 0.55 | −4.20 | 0.13 | 0.315 | 0.546 | 0.68 | |
Distance to Road | |||||||||||
0–100 | 36 | 48.00 | 422355 | 26.44 | 1.82 | 0.11 | 4.08 | 0.45 | 0.142 | 0.400 | 0.85 |
100–200 | 18 | 24.00 | 291134 | 18.23 | 1.32 | 1.29 | 0.33 | 0.187 | 0.481 | 0.81 | |
200–300 | 6 | 8.00 | 210762 | 13.19 | 0.61 | −1.31 | 0.15 | 0.213 | 0.634 | 0.78 | |
300–400 | 8 | 10.67 | 155134 | 9.71 | 1.10 | 0.28 | 0.27 | 0.199 | 0.524 | 0.80 | |
>400 | 7 | 9.33 | 517984 | 32.43 | 0.29 | −3.88 | 0.07 | 0.269 | 0.658 | 0.73 | |
Slope (degree) | |||||||||||
0–5 | 7 | 9.33 | 231304 | 14.48 | 0.64 | 0.11 | −1.25 | 0.16 | 0.213 | 0.625 | 0.78 |
5–15 | 39 | 52.00 | 804153 | 50.34 | 1.03 | 0.29 | 0.26 | 0.194 | 0.545 | 0.80 | |
15–30 | 26 | 34.67 | 477816 | 29.91 | 1.16 | 0.90 | 0.29 | 0.187 | 0.521 | 0.81 | |
30–45 | 3 | 4.00 | 78286 | 4.90 | 0.82 | −0.36 | 0.20 | 0.203 | 0.591 | 0.79 | |
>45 | 0 | 0.00 | 5899 | 0.37 | 0.00 | None | 0.00 | 0.202 | 0.798 | 0.79 | |
Land use | |||||||||||
Df | 18 | 24.00 | 111868 | 7.00 | 3.43 | 0.62 | 5.30 | 0.86 | 0.164 | −0.028 | 0.83 |
F1 | 25 | 33.33 | 1115519 | 69.82 | 0.48 | −6.25 | 0.12 | 0.444 | 0.436 | 0.55 | |
F2 | 1 | 1.33 | 3747 | 0.23 | 5.69 | 1.74 | 1.43 | 0.199 | −0.632 | 0.80 | |
Fo | 3 | 4.00 | 65227 | 4.08 | 0.98 | −0.04 | 0.24 | 0.201 | 0.552 | 0.79 | |
I1 | 4 | 5.33 | 111053 | 6.95 | 0.77 | −0.55 | 0.19 | 0.204 | 0.602 | 0.79 | |
Io | 1 | 1.33 | 23016 | 1.44 | 0.93 | −0.08 | 0.23 | 0.201 | 0.566 | 0.79 | |
L2 | 0 | 0.00 | 238 | 0.01 | 0.00 | None | 0.00 | 0.201 | 0.799 | 0.79 | |
O | 2 | 2.67 | 5088 | 0.32 | 8.37 | 3.00 | 2.11 | 0.196 | −1.308 | 0.80 | |
OI | 21 | 28.00 | 150690 | 9.43 | 2.97 | 5.12 | 0.74 | 0.160 | 0.092 | 0.84 | |
R1 | 0 | 0.00 | 7197 | 0.45 | 0.00 | None | 0.00 | 0.202 | 0.798 | 0.79 | |
SD | 0 | 0.00 | 3046 | 0.19 | 0.00 | None | 0.00 | 0.201 | 0.799 | 0.79 | |
U1 | 0 | 0.00 | 1015 | 0.06 | 0.00 | None | 0.00 | 0.201 | 0.799 | 0.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nohani, E.; Moharrami, M.; Sharafi, S.; Khosravi, K.; Pradhan, B.; Pham, B.T.; Lee, S.; M. Melesse, A. Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water 2019, 11, 1402. https://doi.org/10.3390/w11071402
Nohani E, Moharrami M, Sharafi S, Khosravi K, Pradhan B, Pham BT, Lee S, M. Melesse A. Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water. 2019; 11(7):1402. https://doi.org/10.3390/w11071402
Chicago/Turabian StyleNohani, Ebrahim, Meisam Moharrami, Samira Sharafi, Khabat Khosravi, Biswajeet Pradhan, Binh Thai Pham, Saro Lee, and Assefa M. Melesse. 2019. "Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models" Water 11, no. 7: 1402. https://doi.org/10.3390/w11071402
APA StyleNohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., Lee, S., & M. Melesse, A. (2019). Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water, 11(7), 1402. https://doi.org/10.3390/w11071402