The Role of the Unsaturated Zone for Rainwater Retention and Runoff at a Drained Wetland Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurement Equipment
2.3. Measurement of the Water Budget Components
2.4. Selection of Rainfall Events
2.5. Water Storage Separation
2.6. Runoff Estimation under the Assumption of Quasi-Equilibrium Soil Moisture Conditions
3. Results
3.1. Selected Rainfall Events and Boundary Conditions
3.2. Hydrological Response to the Selected Rainfall Events
3.3. Water Storage Separation
3.4. Runoff under the Assumption of Quasi-Equilibrium Soil Moisture Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Parameter | Description | Unit |
Duz | Soil moisture depletion in the unsaturated zone | mm |
DWL | Ditch water level | m a.s.l. |
ETa | Actual evapotranspiration | mm/h |
ETp | Potential evapotranspiration (calculated as FAO grass reference evapotranspiration) | mm/h |
GWi | Groundwater observation well | |
Ly | Lysimeter | |
mLy | Lysimeter mass | kg |
mLyendR | Mass of the lysimeter at tendR | kg |
mLyeq | Mass of the lysimeter under quasi-equilibrium conditions | kg |
mLystartP | Mass of the lysimeter at tstartP | kg |
P | Precipitation | mm/h |
R | Runoff (inflow, outflow) | mm/h |
Ref | Reference station | |
RendR | Value of the cumulated runoff curve at tendR | mm |
Req | Runoff under the assumption of hydrostatic conditions | mm |
Rin | Inflow | mm |
Rout | Outflow | mm |
RstartR | Value of the cumulated runoff curve at tstartR | mm |
Rtot | Runoff between tstartP and tendR | mm |
S | Water storage | mm |
tendP | Time at the end of the rainfall | dd.mm.yyyy hh:mm |
tendR | Time of the lower reversal point of the cumulated runoff curve | dd.mm.yyyy hh:mm |
tP | Rainfall duration | h |
tR | Duration of the runoff process | h |
tstartP | Time at the beginning of the rainfall | dd.mm.yyyy hh:mm |
tstartR | Time of the upper reversal point of the cumulated runoff curve | dd.mm.yyyy hh:mm |
WT | Water table depth in the lysimeter | cm |
WTendR | Water table depth in the lysimeter at tendR | cm |
WTmax | Maximum water table depth during a rainfall | cm |
WTstartP | Water table depth in the lysimeter at tstartP | cm |
ΔSuz | Water storage change of the unsaturated low moisture zone under dynamic soil moisture conditions | mm |
ΔS | Water storage change between tstartP and tendR | mm |
ΔSeq | Water storage change under assumption of quasi-equilibrium conditions | mm |
ΔWTmaxWT | Difference between WTstartP and WTmax | cm |
ΔWTtot | Difference between WTstartP and WTendR | cm |
ΔWTDWLstartP | Difference between WT and DWL at tstartP | cm |
Appendix A. Additional Figures for Selection of Quasi-Equilibrium Water Storage Curve
References
- Succow, M.; Jeschke, L. Moore in der Landschaft; Verlag Harri Deutsch: Frankfurt, Germany, 1990; p. 268. [Google Scholar]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands; International Mire Conservation Group and International Peat Society: Saarijärvi, Finland, 2002; p. 304. [Google Scholar]
- Joosten, H.; Tanneberger, F.; Moen, A. Mires and Peatlands of Europe: Status, Distribution and Conservation; Schweizerbart Science Publishers: Stuttgart, Germany, 2017; p. 730. [Google Scholar]
- Bullock, A.; Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Bacon, K.L.; Baird, A.J.; Blundell, A.; Bourgault, M.A.; Chapman, P.J.; Dargie, G.; Dooling, G.P.; Gee, C.; Holden, J.; Kelly, T.; et al. Questioning ten common assumptions about peatlands. Mires Peat 2017, 19, 1–23. [Google Scholar] [CrossRef]
- Branfireun, B.A.; Roulet, N.T. The baseflow and storm flow hydrology of a precambrian shield headwater peatland. Hydrol. Process. 1998, 12, 57–72. [Google Scholar] [CrossRef]
- Roulet, N.T.; Woo, M.K. Runoff generation in a low Arctic drainage basin. J. Hydrol. 1988, 101, 213–226. [Google Scholar] [CrossRef]
- Roulet, N.T.; Woo, M.K. Hydrology of a wetland in the continuous permafrost region. J. Hydrol. 1986, 89, 73–91. [Google Scholar] [CrossRef]
- Waddington, J.M.; Roulet, N.T.; Hill, A.R. Runoff mechanisms in a forested groundwater discharge wetland. J. Hydrol. 1993, 147, 37–60. [Google Scholar] [CrossRef]
- McKillop, R.; Kouwen, N.; Soulis, E.D. Modeling the rainfall-runoff response of a headwater wetland. Water Resour. Res. 1999, 35, 1165–1177. [Google Scholar] [CrossRef]
- Daniels, S.M.; Agnew, C.T.; Allott, T.E.H.; Evans, M.G. Water table variability and runoff generation in an eroded peatland, South Pennines, UK. J. Hydrol. 2008, 361, 214–226. [Google Scholar] [CrossRef]
- Martin, J.E. Hydrologic response of a small forested swamp complex, Seymour Valley, British Columbia. Can. Geogr. 2011, 55, 457–469. [Google Scholar] [CrossRef]
- Glenn, M.S.; Woo, M.K. Spring and summer hydrology of a valley-bottom wetland, Ellesmere Island, Northwest Territories, Canada. Wetlands 1997, 17, 321–329. [Google Scholar] [CrossRef]
- Amatya, D.M.; Gregory, J.D.; Skaggs, R.W. Effects of controlled drainage on storm event hydrology in a loblolly pine plantation. J. Am. Water Resour. Assoc. 2000, 36, 175–190. [Google Scholar] [CrossRef]
- Epps, T.H.; Hitchcock, D.R.; Jayakaran, A.D.; Loflin, D.R.; Williams, T.M.; Amatya, D.M. Characterization of Storm Flow Dynamics of Headwater Streams in the South Carolina Lower Coastal Plain. J. Am. Water Resour. Assoc. 2013, 49, 76–89. [Google Scholar] [CrossRef]
- Han, S.; Xu, D.; Wang, S. Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China. Hydrol. Earth Syst. Sci. 2012, 16, 3115–3125. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; McNulty, S.G.; Amatya, D.M.; Skaggs, R.W.; Swift, L.W.; Shepard, J.P.; Riekerk, H. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US. J. Hydrol. 2002, 263, 92–104. [Google Scholar] [CrossRef]
- Torres, I.B.L.T.; Amatya, D.M.; Sun, G.; Callahan, T.J. Seasonal rainfall-runoff relationships in a lowland forested watershed in the southeastern USA. Hydrol. Process. 2011, 25, 2032–2045. [Google Scholar] [CrossRef]
- Brown, R.G. Effects of wetland channelization on runoff and loading. Wetlands 1988, 8, 123–133. [Google Scholar] [CrossRef]
- Robinson, M.; Gannon, B.; Schuch, M.A.X. A comparison of the hydrology of moorland under natural conditions, agricultural use and forestry. Hydrol. Sci. J. 1991, 36, 565–577. [Google Scholar] [CrossRef]
- Dunn, S.M.; Mackay, R. Modelling the hydrological impacts of open ditch drainage. J. Hydrol. 1996, 179, 37–66. [Google Scholar] [CrossRef]
- Holden, J.; Evans, M.G.; Burt, T.P.; Horton, M. Impact of Land Drainage on Peatland Hydrology. J. Environ. Qual. 2006, 35, 1764–1778. [Google Scholar] [CrossRef]
- Prévost, M.; Plamondon, A.P.; Belleau, P. Effects of drainage of a forested peatland on water quality and quantity. J. Hydrol. 1999, 214, 130–143. [Google Scholar] [CrossRef]
- Iritz, L.; Johansson, B.; Lundin, L. Impacts of forest drainage on floods. Hydrol. Sci. J. 1994, 39, 637–661. [Google Scholar] [CrossRef] [Green Version]
- Amatya, D.M.; Skaggs, R.W. Long-term hydrology and water quality of a drained pine plantation in North Carolina. Trans. ASABE 2011, 54, 2087–2098. [Google Scholar] [CrossRef]
- Wesstrom, I.; Ekbohm, G.; Linner, H.; Messing, I. The effects of controlled drainage on subsurface outflow from level agricultural fields. Hydrol. Process. 2003, 17, 1525–1538. [Google Scholar] [CrossRef]
- Ketcheson, S.J.; Price, J.S. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 2011, 31, 1263–1274. [Google Scholar] [CrossRef]
- Shantz, M.A.; Price, J.S. Characterization of surface storage and runoff patterns following peatland restoration, Quebec, Canada. Hydrol. Process. 2006, 20, 3799–3814. [Google Scholar] [CrossRef]
- Wilson, L.; Wilson, J.; Holden, J.; Johnstone, I.; Armstrong, A.; Morris, M. Recovery of water tables in Welsh blanket bog after drain blocking: Discharge rates, time scales and the influence of local conditions. J. Hydrol. 2010, 391, 377–386. [Google Scholar] [CrossRef]
- Wilson, L.; Wilson, J.; Holden, J.; Johnstone, I.; Armstrong, A.; Morris, M. The impact of drain blocking on an upland blanket bog during storm and drought events, and the importance of sampling-scale. J. Hydrol. 2011, 404, 198–208. [Google Scholar] [CrossRef]
- Nachabe, M.H. Analytical expressions for transient specific yield and shallow water table drainage. Water Resour. Res. 2002, 38, 1193. [Google Scholar] [CrossRef]
- Amatya, D.M.; Skaggs, R.W.; Gregory, J.D. Effects of controlled drainage on the hydrology of drained pine plantations in the North Carolina coastal plain. J. Hydrol. 1996, 181, 211–232. [Google Scholar] [CrossRef]
- Harder, S.V.; Amatya, D.M.; Callahan, T.J.; Trettin, C.C.; Hakkila, J. Hydrology and water budget for a forested Atlantic coastal plain watershed, South Carolina. J. Am. Water Resour. Assoc. 2007, 43, 563–575. [Google Scholar] [CrossRef]
- Soylu, M.E.; Istanbulluoglu, E.; Lenters, J.D.; Wang, T. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region. Hydrol. Earth Syst. Sci. 2011, 15, 787–806. [Google Scholar] [CrossRef] [Green Version]
- Ridolfi, L.; D’Odorico, P.; Laio, F.; Tamea, S.; Rodriguez-Iturbe, I. Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resour. Res. 2008, 44, W01435. [Google Scholar] [CrossRef]
- Vervoort, R.W.; Van Der Zee, S. Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems. Water Resour. Res. 2009, 45, 13. [Google Scholar] [CrossRef]
- Acharya, S.; Jawitz, J.W.; Mylavarapu, R.S. Analytical expressions for drainable and fillable porosity of phreatic aquifers under vertical fluxes from evapotranspiration and recharge. Water Resour. Res. 2012, 48, W11526. [Google Scholar] [CrossRef]
- Laio, F.; Tamea, S.; Ridolfi, L.; D’Odorico, P.; Rodriguez-Iturbe, I. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics. Water Resour. Res. 2009, 45, W05419. [Google Scholar] [CrossRef]
- Nachabe, M.; Masek, C.; Obeysekera, J. Observations and modeling of profile soil water storage above a shallow water table. Soil Sci. Soc. Am. J. 2004, 68, 719–724. [Google Scholar] [CrossRef]
- Grünewald, U. Water resources management in river catchments influenced by lignite mining. Ecol. Eng. 2001, 17, 143–152. [Google Scholar] [CrossRef]
- Dietrich, O.; Redetzky, M.; Schwärzel, K. Wetlands with controlled drainage and sub-irrigation systems—Modelling of the water balance. Hydrol. Process. 2007, 21, 1814–1828. [Google Scholar] [CrossRef]
- HAD. Hydrological Atlas of Germany; Bundesanstalt für Gewässerkunde: Koblenz, Germany, 1998. [Google Scholar]
- BÜK300. Bodenübersichtskarte Brandenburg 1:300 000 (Soil Map Federal State of Brandenburg 1:300 000); Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg: Kleinmachnow, Germany, 2007.
- Meissner, R.; Rupp, H.; Seyfarth, M. Advances in out door lysimeter techniques. Water Air Soil Pollut. Focus 2008, 8, 217–225. [Google Scholar] [CrossRef]
- Bethge-Steffens, D.; Meissner, R.; Rupp, H. Development and practical test of a weighable groundwater lysimeter for floodplain sites. J. Plant Nutr. Soil Sci. 2004, 167, 516–524. [Google Scholar] [CrossRef]
- Dietrich, O.; Fahle, M.; Seyfarth, M. Behavior of water balance components at sites with shallow groundwater tables: Possibilities and limitations of their simulation using different ways to control weighable groundwater lysimeters. Agric. Water Manag. 2016, 163, 75–89. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; pp. 1–300. [Google Scholar]
- Shah, N.; Ross, M. Variability in Specific Yield under Shallow Water Table Conditions. J. Hydrol. Eng. 2009, 14, 1290–1298. [Google Scholar] [CrossRef]
- Dietrich, O. Effects of Rainfall Events on the Water Storage Characteristic of a Shallow Water Table Site—Lysimeter Data; ZALF: Müncheberg, Germany, 2018. [Google Scholar] [CrossRef]
- Gribovszki, Z.; Szilágyi, J.; Kalicz, P. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—A review. J. Hydrol. 2010, 385, 371–383. [Google Scholar] [CrossRef]
- Bonaiti, G.; Borin, M. Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields. Agric. Water Manag. 2010, 98, 343–352. [Google Scholar] [CrossRef]
- Childs, E.C. The Nonsteady State of the Water Table in Drained Land. J. Geophys. Res. 1960, 65, 780–782. [Google Scholar] [CrossRef]
- Dietrich, O.; Kaiser, T. Impact of groundwater regimes on water balance components of a site with a shallow water table. Ecohydrology 2017, 10, e1867. [Google Scholar] [CrossRef]
- Oswald, C.J.; Richardson, M.C.; Branfireun, B.A. Water storage dynamics and runoff response of a boreal Shield headwater catchment. Hydrol. Process. 2011, 25, 3042–3060. [Google Scholar] [CrossRef]
- Evans, M.G.; Burt, T.P.; Holden, J.; Adamson, J.K. Runoff generation and water table fluctuations in blanket peat: Evidence from UK data spanning the dry summer of 1995. J. Hydrol. 1999, 221, 141–160. [Google Scholar] [CrossRef]
- Proulx-McInnis, S.; St-Hilaire, A.; Rousseau, A.N.; Jutras, S.; Carrer, G.; Levrel, G. Seasonal and monthly hydrological budgets of a fen-dominated forested watershed, James Bay region, Quebec. Hydrol. Process. 2013, 27, 1365–1378. [Google Scholar] [CrossRef]
- Brauer, C.C.; Teuling, A.J.; Overeem, A.; Van Der Velde, Y.; Hazenberg, P.; Warmerdam, P.M.M.; Uijlenhoet, R. Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment. Hydrol. Earth Syst. Sci. 2011, 15, 1991–2005. [Google Scholar] [CrossRef] [Green Version]
- Logsdon, S.D.; Schilling, K.E.; Hernandez-Ramirez, G.; Prueger, J.H.; Hatfield, J.L.; Sauer, T.J. Field estimation of specific yield in a central Iowa crop field. Hydrol. Process. 2010, 24, 1369–1377. [Google Scholar] [CrossRef]
Hydraulic Conditions at tstartP | ΔS/P | Rtot/P | ETa/P |
---|---|---|---|
All conditions | 69.2% | 8.3% | 22.5% |
Sub-irrigation | 83.1% | 6.3% | 10.6% |
Drainage | 51.3% | 12.6% | 36.1% |
ΔS/P | Rtot/P | ETa/P | |
---|---|---|---|
ETp/ttot | −0.26 | 0.17 | 0.29 * |
WTstartP | −0.49 ** | 0.25 | 0.52 ** |
ΔWTDWLstartP | −0.41 ** | 0.27 * | 0.36 ** |
Duz,startP | 0.46 ** | −0.36** | −0.42 ** |
tP | −0.08 | 0.07 | 0.10 |
tR | −0.58 ** | 0.37 ** | 0.53 ** |
ttot | −0.42 ** | 0.24 | 0.43 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietrich, O.; Fahle, M.; Steidl, J. The Role of the Unsaturated Zone for Rainwater Retention and Runoff at a Drained Wetland Site. Water 2019, 11, 1404. https://doi.org/10.3390/w11071404
Dietrich O, Fahle M, Steidl J. The Role of the Unsaturated Zone for Rainwater Retention and Runoff at a Drained Wetland Site. Water. 2019; 11(7):1404. https://doi.org/10.3390/w11071404
Chicago/Turabian StyleDietrich, Ottfried, Marcus Fahle, and Jörg Steidl. 2019. "The Role of the Unsaturated Zone for Rainwater Retention and Runoff at a Drained Wetland Site" Water 11, no. 7: 1404. https://doi.org/10.3390/w11071404
APA StyleDietrich, O., Fahle, M., & Steidl, J. (2019). The Role of the Unsaturated Zone for Rainwater Retention and Runoff at a Drained Wetland Site. Water, 11(7), 1404. https://doi.org/10.3390/w11071404