Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Baltic Sea and Two Coastal Study Cases
2.2. Problem Formulation and Simulation Scenarios
2.3. Simulation and Analysis Approach
3. Results and Discussion
3.1. Coastal Transport Characterization
3.2. Coastal Transport Correlations and Drivers
3.3. Solute Concentration Spreading into the Baltic Sea
3.4. Relevance of the Numerical Experimentation Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hannerz, F.; Destouni, G. Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments. AMBIO 2006, 35, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.J.; Björck, S.; Bonsdorff, E.; Carstensen, J.; Destouni, G.; Gustafsson, B.G.; Hietanen, S.; Kortekaas, M.; Kuosa, H.; Markus Meier, H.E.; et al. Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 2009, 43, 3412–3420. [Google Scholar] [CrossRef] [PubMed]
- Pastuszak, M.; Witek, Z.; Nagel, K.; Wielgat, M.; Grelowski, A. Role of the Oder estuary (Southern Baltic) in transformation of the riverine nutrient loads. J. Mar. Syst. 2005, 57, 30–54. [Google Scholar] [CrossRef]
- Radtke, H.; Neumann, T.; Voss, M.; Fennel, W. Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Corell, H.; Döös, K. Difference in particle transport between two coastal areas in the Baltic Sea investigated with high-resolution trajectory modeling. AMBIO 2013, 42, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Engqvist, A.; Döös, K.; Andrejev, O. Modeling water exchange and contaminant transport through a Baltic coastal region. AMBIO 2006, 35, 435–447. [Google Scholar] [CrossRef]
- Döös, K.; Engqvist, A. Assessment of water exchange between a discharge region and the open sea—A comparison of different methodological concepts. Estuar. Coast. Shelf Sci. 2007, 74, 709–721. [Google Scholar] [CrossRef]
- Delpeche-Ellmann, N.C.; Soomere, T. Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar. Pollut. Bull. 2013, 67, 121–129. [Google Scholar] [CrossRef]
- Myrberg, K.; Andrejev, O. Modelling of the circulation, water exchange and water age properties of the Gulf of Bothnia. Oceanologia 2006, 48, 55–74. [Google Scholar]
- Jönsson, B.; Lundberg, P.A.; Döös, K. Baltic sub-basin turnover times examined using the Rossby Centre Ocean Model. AMBIO 2004, 33, 257–260. [Google Scholar] [CrossRef]
- Vigouroux, G.; Destouni, G.; Jönsson, A.; Cvetkovic, V. A scalable dynamic characterisation approach for water quality management in semi-enclosed seas and archipelagos. Mar. Pollut. Bull. 2019, 139, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Gren, I.M.; Destouni, G. Does Divergence of Nutrient Load Measurements Matter for Successful Mitigation of Marine Eutrophication? AMBIO 2012, 41, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Vigouroux, G.; Bring, A.; Cvetkovic, V.; Destouni, G. Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands. Water 2019, 11, 552. [Google Scholar] [CrossRef]
- Jarsjö, J.; Shibuo, Y.; Destouni, G. Spatial distribution of unmonitored inland water discharges to the sea. J. Hydrol. 2008, 348, 59–72. [Google Scholar] [CrossRef]
- Destouni, G.; Shibuo, Y.; Jarsjö, J. Freshwater flows to the sea: Spatial variability, statistics and scale dependence along coastlines. Geophys. Res. Lett. 2008, 35, L18401. [Google Scholar] [CrossRef]
- Quin, A.; Destouni, G. Large-scale comparison of flow-variability dampening by lakes and wetlands in the landscape. Land Degrad. Dev. 2018, 29, 3617–3627. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Bąk, B. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ. Monit. Assess. 2018, 190, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Placke, M.; Meier, M.; Gräwe, U.; Neumann, T.; Frauen, C.; Liu, Y. Long-term mean circulation of the Baltic Sea as represented by various ocean circulation models. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Dargahi, B.; Cvetkovic, V. Hydrodynamics and Transport Characterization of the Baltic Sea 2000–2009 Report. The Royal Institute of Technology, 2014. Available online: https://balsysproject.files.wordpress.com/2015/08/hydrodynamic-and-transport-characterization-of-the-baltic-sea-2000-2009.pdf (accessed on 20 November 2018).
- Meier, H.M. Modeling the pathways and ages of inflowing salt-and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci. 2007, 74, 610–627. [Google Scholar] [CrossRef]
- Destouni, G.; Hannerz, F.; Prieto, C.; Jarsjö, J.; Shibuo, Y. Small unmonitored near-coastal catchment areas yielding large mass loading to the sea. Glob. Biogeochem. Cycles 2008, 22, GB4003. [Google Scholar] [CrossRef]
- Levi, L.; Cvetkovic, V.; Destouni, G. Data-driven analysis of nutrient inputs and transfers through nested catchments. Sci. Total Environ. 2018, 610, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Helsinki Commission (HELCOM). The Fifth Baltic Sea Pollution Load Compilation (PL-5) Baltic Sea Environment Proceedings No. 128; Helsinki Commission: Helsinki, Finland, 2011. [Google Scholar]
- Helsinki Commission (HELCOM). Input of Nutrients by the Seven Biggest Rivers in the Baltic Sea Region, Baltic Sea Environment Proceedings No. 163; Helsinki Commission: Helsinki, Finland, 2018. [Google Scholar]
- Chen, C.; Liu, H.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Huang, H.; Beardsley, R.C.; Xu, Q.; Limeburner, R.; Cowles, G.W.; Sun, Y.; Qi, J.; Lin, H. Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Beardsley, R.C.; Chen, C.; Xu, Q. Coastal flooding in Scituate (MA): A FVCOM study of the 27 December 2010 nor’easter. J. Geophys. Res. Ocean. 2013, 118, 6030–6045. [Google Scholar] [CrossRef]
- Wei, J.; Malanotte-Rizzoli, P.; Eltahir, E.A.; Xue, P.; Xu, D. Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent. Clim. Dyn. 2014, 43, 1575–1594. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts (ECMWF). Available online: https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-20c (accessed on 6 September 2016).
- Objectively Analyzed Air-Sea Fluxes for the Global Oceans Project, Woods Hole Oceanographic Institution (WHOI). Available online: //oaflux.whoi.edu/index.html (accessed on 29 January 2016).
- International Satellite Cloud Climatology Project (ISCCP). Available online: https://isccp.giss.nasa.gov/projects/flux.html (accessed on 29 January 2016).
- Swedish Meteorological and Hydrological Institute (SMHI), Oceanografiska Observationer. Available online: https://opendata-download-ocobs.smhi.se/explore/ (accessed on 29 June 2016).
- Swedish Meteorological and Hydrological Institute (SMHI), Marina Miljöövervakningsdata. Available online: http://www.smhi.se/klimatdata/oceanografi/havsmiljodata/2.2596 (accessed on 23 November 2016).
- Swedish Meteorological and Hydrological Institute (SMHI), Vattenwebb. Available online: https://vattenwebb.smhi.se/station/# (accessed on 25 February 2012).
- The Global Runoff Data Centre, 56068 Koblenz, Germany (GRDC). Available online: http://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/211_ctlgs/catalogues_node.html (accessed on 15 March 2015).
- Thompson, R.O. Coherence Significance Levels. J. Atmos. Sci. 1979, 36, 2020–2021. [Google Scholar] [CrossRef]
- Miles, J.H. Estimation of signal coherence threshold and concealed spectral lines applied to detection of turbofan engine combustion noise. J. Acoust. Soc. Am. 2011, 129, 3068–3081. [Google Scholar] [CrossRef] [Green Version]
- Kustvattenkommitten. Miljorapport för 2001 från Kustvattenkommitten i Kalmar Län. 2001. Available online: http://www.kalmarlanskustvatten.org/data/arsrapporter/kalmar01.pdf (accessed on 17 March 2019).
- Länsstyrelsen i Kalmar län. Orsaker till Övergödning av Östersjöns Kustvatten: Källfördelning för Närsaltutsläpp i Kalmar Län. 2000. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:naturvardsverket:diva-4565 (accessed on 17 March 2019).
- Stålnacke, P.; Grimvall, A.; Sundblad, K.; Tonderski, A. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environ. Monit. Assess. 1999, 58, 173–200. [Google Scholar] [CrossRef]
- Statistiska Centralbyrån (SCB), Folkmängd i Riket, Län och Kommuner 30 September 2017 och Befolkningsförändringar 1 July–30 September 2017. Available online: https://www.scb.se/hitta-statistik/statistik-efter-amne/befolkning/befolkningens-sammansattning/befolkningsstatistik/pong/tabell-och-diagram/kvartals--och-halvarsstatistik--kommun-lan-och-riket/kvartal-3-2017/ (accessed on 17 March 2019).
- Nilsson, S. International River Basins in the Baltic Sea Region. Report: BSR INTERREG III B Programme Project Report. 2006. Available online: https://www.baltex-research.eu/material/downloads/riverbasins.pdf (accessed on 17 March 2019).
- Helsinki Commission (HELCOM). HELCOM Baltic Sea Action Plan (Adopted by the HELCOM Ministerial Meeting, Krakow, Poland 15th November 2007); Helsinki Commission: Helsinki, Finland, 2007. [Google Scholar]
- Destouni, G.; Fischer, I.; Prieto, C. Water quality and ecosystem management: Data-driven reality check of effects in streams and lakes. Water Resour. Res. 2017, 53, 6395–6404. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Cvetkovic, V.; Destouni, G. Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea. Water 2019, 11, 1407. https://doi.org/10.3390/w11071407
Chen Y, Cvetkovic V, Destouni G. Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea. Water. 2019; 11(7):1407. https://doi.org/10.3390/w11071407
Chicago/Turabian StyleChen, Yuanying, Vladimir Cvetkovic, and Georgia Destouni. 2019. "Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea" Water 11, no. 7: 1407. https://doi.org/10.3390/w11071407
APA StyleChen, Y., Cvetkovic, V., & Destouni, G. (2019). Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea. Water, 11(7), 1407. https://doi.org/10.3390/w11071407