Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- 200 l/s/m: ports in which there is nothing behind the breakwater six cases: Sta. Margarida, Empuriabrava, Port d’Aro, Premià de Mar, Port Fòrum, S. Jordi Alfama).
- 10 l/s/m: harbors with small boats berthed at the lee side of the breakwater (the 34 ports not included in the other categories).
- 1 l/s/m: harbors where there are buildings on the dock behind the breakwater (four ports: Barcelona, Vilanova i la Geltrú, Tarragona, S. Carles de la Ràpita).
- 0.4 l/s/m: ports where there are goods or other equipment on the dock behind the breakwater (three cases: Arenys de Mar, Coma-ruga, Cambrils).
- Very low vulnerability, when qt < q ≤ 1.2qt
- Low vulnerability, when 1.2qt < q ≤ 2qt
- Medium vulnerability, when 2qt < q ≤ 5qt
- High vulnerability, when 5qt < q ≤ 10qt
- Very high vulnerability, when q > 10qt
- Very low vulnerability: No damage, 0 €.
- Low vulnerability: Very small damage, of the order of 103 €.
- Medium vulnerability: Appreciable damage, of the order of 104 €.
- High vulnerability: Large damage, of the order of 105 €.
- Very high vulnerability: Very large damage, of the order of 106 €.
4. Results of Port Overtopping Due to SLR
5. Adaptation Measures for Port Overtopping
- To build berms in the exposed side of the breakwater, which break the highest waves reaching the structure.
- To build submerged breakwaters in front of the main port breakwater to reduce the energy of the incoming waves breaking also the highest ones.
- To increase the width of the port breakwater for slightly reducing the overtopping flow.
- To rise the breakwater height. This can be done adding rocks or blocks (in the case of rubble mound structures) or building a crown wall at the top of the breakwater.
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Arcilla, A.; Mösso, C.; Sierra, J.P.; Mestres, M.; Harzallah, A.; Senouci, M.; El Rahey, M. Climate drivers of potential hazards in Mediterranean coasts. Reg. Environ. Chang. 2011, 11, 617–636. [Google Scholar] [CrossRef]
- Thompson, D.A.; Karunarathna, H.; Reeve, D.E. Modelling extreme wave overtopping at Aberystwyth promenade. Water 2017, 9, 663. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Gusmao, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Revell, D.L.; Battalio, R.; Spear, B.; Ruggiero, P.; Vandever, J. A methodology for predicting future coastal hazards due to sea level rise on the California Coast. Clim. Chang. 2011, 109, 251–276. [Google Scholar] [CrossRef]
- Hinkel, J.; Brown, S.; Exner, L.; Nicholls, R.J.; Vafeidis, A.T.; Kebede, A.S. Sea level rise impacts on Africa and the effects of mitigation and adaptation: An application of DIVA. Reg. Environ. Chang. 2012, 12, 207–224. [Google Scholar] [CrossRef]
- Isobe, M. Impact of global warming on coastal structures in shallow water. Ocean Eng. 2013, 71, 51–57. [Google Scholar] [CrossRef]
- Burcharth, H.F.; Andersen, T.L.; Lara, J.L. Upgrade of coastal defence structures against increased loadings caused by climate change: A first methodological approach. Coast. Eng. 2014, 87, 112–121. [Google Scholar] [CrossRef]
- Chen, X.; Jonkman, S.N.; Pasterkamp, S.; Suzuki, T.; Altomare, C. Vulnerability of buildings on coastal dikes due to wave overtopping. Water 2017, 9, 394. [Google Scholar] [CrossRef]
- Kane, H.H.; Fletcher, C.H.; Frazer, L.N.; Barbee, M.M. Critical elevation levels for flooding due to sea-level rise in Hawaii. Reg. Environ. Chang. 2015, 15, 1679–1687. [Google Scholar] [CrossRef]
- Wadey, M.P.; Nicholls, R.J.; Hutton, C. Coastal flooding in the Solent: An integrated analysis of defences and inundation. Water 2012, 4, 430–459. [Google Scholar] [CrossRef]
- Hsu, T.-W.; Shih, D.-S.; Li, C.-Y.; Lan, Y.-J.; Lin, Y.-C. A study on coastal flooding and risk assessment under climate change in the mid-western coast of Taiwan. Water 2017, 9, 390. [Google Scholar] [CrossRef]
- Du, J.; Shen, J.; Zhang, I.J.; Ye, F.; Liu, Z.; Wang, Z.; Wang, Y.P.; Yu, X.; Sisson, M.; Wang, H.V. Tidal response to sea-level rise in different types of estuaries: The importance of length, bathymetry and geometry. Geophys. Res. Lett. 2017, 45, 227–235. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrekeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, F.; De Bonis Trapella, A.; Conticello, F.R. Efficiency assessment of existing pumping/hydraulic network systems to mitigate flooding in low-lying coastal regions under different scenarios of sea level rise: The Mazzocchio area study case. Water 2018, 10, 820. [Google Scholar] [CrossRef]
- Orton, P.M.; Conticello, F.R.; Cioffi, F.; Hall, T.M.; Georgas, N.; Lall, U.; Blumberg, A.F.; MacManus, K. Flood hazard assessment from storm tides, rain and sea level rise for a tidal estuary. Nat. Hazards 2018. [Google Scholar] [CrossRef]
- Hallegatte, S.; Ranger, N.; Mestre, O.; Dumas, P.; Corfee-Morlot, J.; Herweijer, C.; Wood, R.M. Assessing climate change impacts, sea level rise and storm surge risk in port cities: A case study on Copenhagen. Clim. Chang. 2011, 104, 113–137. [Google Scholar] [CrossRef]
- Paudel, Y.; Botzen, W.J.W.; Aerts, J.C.J.H. Influence of climate change and socio-economic development on catastrophe insurance: A case study of flood risk scenarios in the Netherlands. Reg. Environ. Chang. 2015, 15, 1717–1729. [Google Scholar] [CrossRef]
- Brown, S.; Hanson, S.; Nicholls, R.J. Implications of sea-level rise and extreme events around Europe: A review of coastal energy infrastructure. Clim. Chang. 2014, 122, 81–95. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; Sierra, J.P.; Brown, S.; Casas-Prat, M.; Nicholls, R.J.; Lionello, P.; Conte, D. A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Reg. Environ. Chang. 2016, 16, 2471–2484. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; Casas-Prat, M. Analysis of potential impacts on coastal areas due to changes in wave conditions. Clim. Chang. 2014, 124, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Inoue, S.; Fisher, N.; Schwegler, B. Climate change impact on international seaports: Knowledge, perceptions, and planning efforts among port administrators. Clim. Chang. 2012, 110, 5–29. [Google Scholar] [CrossRef]
- Messner, S.; Moran, L.; Reub, G.; Campbell, J. Climate change and sea level rise impacts at ports and a consistent methodology to evaluate vulnerability and risk. WIT Trans. Ecol. Environ. 2013, 169, 141–153. [Google Scholar] [Green Version]
- Sierra, J.P.; Genius, A.; Lionello, P.; Mestres, M.; Mösso, C.; Marzo, L. Modelling the impact of climate change on harbour operability: The Barcelona port case study. Ocean Eng. 2017, 141, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Casas-Prat, M.; Sierra, J.P. Trend analysis of wave direction and associated impacts on the Catalan Coast. Clim. Chang. 2012, 115, 667–691. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casas-Prat, M.; Virgili, M.; Mösso, C.; Sánchez-Arcilla, A. Impacts on wave-driven harbour agitation due to climate change in Catalan ports. Nat. Hazard Earth Syst. Sci. 2015, 15, 1695–1709. [Google Scholar] [CrossRef] [Green Version]
- Mase, H.; Tsujio, D.; Yasuda, T.; Mori, N. Stability analysis of composite breakwater with wave-dissipating blocks considering increase in sea levels, surges and waves due to climate change. Ocean Eng. 2013, 71, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Suh, K.-D.; Kim, S.-W.; Kim, S.; Cheon, S. Effects of climate change on stability of caisson breakwaters in different water depths. Ocean Eng. 2013, 71, 103–112. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casanovas, I.; Mösso, C.; Mestres, M.; Sánchez-Arcilla, A. Vulnerability of Catalan (NW Mediterranean) ports to wave overtopping due to different scenarios of sea level rise. Reg. Environ. Chang. 2016, 16, 1457–1468. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Sierra, J.P. Projected future wave climate in the NW Mediterranean Sea. J. Geophys. Res. Oceans 2013, 118, 3548–3568. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; Gonzalez-Marco, D.; Bolaños, R. A review of wave climate and prediction along the Spanish Mediterranean coast. Nat. Hazards Earth Syst. Sci. 2008, 8, 1217–1228. [Google Scholar] [CrossRef]
- Sorensen, R.M. Basic Coastal Engineering, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 138–149. [Google Scholar]
- Mendoza, E.T.; Jiménez, J.A. Storm-induced beach erosion potential on the Catalonian coast. J. Coast. Res. 2006, 48, 81–88. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S. Sea level change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Chang. 2012, 80–81, 14–20. [Google Scholar] [CrossRef]
- Mori, N.; Shimura, T.; Yasuda, T.; Mase, H. Multi-model climate projections of ocean surface variables under different climate scenarios—Future change of waves, sea level and wind. Ocean Eng. 2013, 71, 122–129. [Google Scholar] [CrossRef]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earths Future 2014, 2, 383–406. [Google Scholar] [CrossRef]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195–11200. [Google Scholar] [CrossRef] [Green Version]
- Nauels, A.; Rogelj, J.; Schleussner, C.-F.; Meinshausen, M.; Mengel, M. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environ. Res. Lett. 2017, 12, 114002. [Google Scholar] [CrossRef] [Green Version]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C. Upper limit for sea level projections by 2100. Environ. Res. Lett. 2014, 9, 104008. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Griffies, S.M.; Stouffer, R.J. Spatial variability of sea level rise in twenty-first century projections. J. Climate 2010, 23, 4585–4607. [Google Scholar] [CrossRef]
- Pullen, T.; Allsop, N.W.H.; Bruce, T.; Kortenhaus, A.; Scüttrumpf, H.; van der Meer, J.W. EurOtop Wave Overtopping of Sea Defences and Related Structures—Assessment Manual; Kuratorium für Forschung in Küsteningenieurwesen: Heide, Germany, 2007. [Google Scholar]
- Linham, M.M.; Nicholls, R.J. Adaptation technologies for coastal erosion and flooding: A review. Proc. Inst. Civil Eng. Marit. Eng. 2012, 165, 95–112. [Google Scholar] [CrossRef]
- Hinkel, J.; van Vuuren, D.P.; Nicholls, R.J.; Klein, R.J.T. The effects of mitigation and adaptation on coastal impacts in the 21st century. Clim. Chang. 2013, 117, 783–794. [Google Scholar] [CrossRef]
- Van Loon-Steensma, J. Salt marshes to adapt the flood defences along the Dutch Wadden Sea coast. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 929–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuik, V.; Jonkman, S.N.; Borsje, B.W.; Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 2016, 116, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; Garcia-León, M.; Gracia, V.; Sánchez-Arcilla, A. Green measures for Mediterranean harbours under a changing climate. Proc. Inst. Civ. Eng. Marit. Eng. 2017, 170, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Koftis, T.; Prinos, P.; Stratigaki, V. Wave damping over artificial Posidonia oceanica meadow: A large scale experimental study. Coast. Eng. 2013, 73, 71–83. [Google Scholar] [CrossRef]
- Becker, A.H.; Acciaro, M.; Asariotis, R.; Cabrera, E.; Cretegny, L.; Crist, P.; Esteban, M.; Mather, A.; Messner, S.; Naruse, S.; et al. A note on climate change adaptation for seaports: A challenge for global ports, a challenge for global society. Clim. Chang. 2013, 120, 683–695. [Google Scholar] [CrossRef]
- Nguyen, D.I.; Brossard, J. Adaptation of existing breakwaters to sea level rise-overtopping effect. In Proceedings of the 33rd International Conference on Coastal Engineering, Santander, Spain, 1–6 July 2012. [Google Scholar]
- Zviely, D.; Bitan, M.; DiSegni, D.M. The effect of sea-level rise in the 21st century on marine structures along the Mediterranean coast of Israel: An evaluation of physical damage and adaptation cost. Appl. Geogr. 2012, 57, 154–162. [Google Scholar] [CrossRef]
- Hall, J.W.; Brown, S.; Nicholls, R.J.; Pidgeon, N.F.; Watson, R.T. Proportionate adaptation. Nat. Clim. Chang. 2012, 2, 833–834. [Google Scholar] [CrossRef]
- PG. Memoria Econòmica I D’activitats 2017; Ports de la Generalitat: Barcelona, Spain, 2018. [Google Scholar]
- APB. Annual Report 2017; Port de Barcelona: Barcelona, Spain, 2018. [Google Scholar]
- APT. Annual Report 2017; Port de Tarragona: Tarragona, Spain, 2018. [Google Scholar]
Year | Barcelona | S. Carles de la Ràpita |
---|---|---|
2020 | 10.0 | 3.50 |
2030 | 15.0 | 5.25 |
2040 | 20.0 | 7.00 |
2050 | 25.0 | 8.75 |
2060 | 30.0 | 10.50 |
2070 | 35.0 | 12.25 |
2080 | 40.0 | 14.00 |
2090 | 45.0 | 15.75 |
2100 | 50.0 | 17.50 |
Year | RCP4.5 | RCP8.5 | HES | ||||||
---|---|---|---|---|---|---|---|---|---|
DD | AC0D | ACMD | DD | AC0D | ACMD | DD | AC0D | ACMD | |
2020 | 0.004 | 1.840 | 0.000 | 0.004 | 1.903 | 0.000 | 0.005 | 1.903 | 0.000 |
2030 | 0.005 | 1.903 | 0.000 | 0.005 | 1.903 | 0.000 | 0.014 | 2.198 | 0.270 |
2040 | 0.005 | 1.903 | 0.000 | 0.014 | 2.738 | 0.270 | 0.033 | 3.133 | 1.130 |
2050 | 0.023 | 2.873 | 0.970 | 0.032 | 2.898 | 0.995 | 0.034 | 3.358 | 1.155 |
2060 | 0.023 | 2.898 | 0.970 | 0.033 | 2.998 | 1.130 | 0.124 | 4.253 | 1.880 |
2070 | 0.033 | 3.108 | 0.995 | 0.034 | 3.358 | 1.155 | 0.152 | 4.650 | 2.125 |
2080 | 0.033 | 3.108 | 1.130 | 0.034 | 3.503 | 1.855 | 1.043 | 5.785 | 2.985 |
2090 | 0.033 | 3.133 | 1.130 | 0.124 | 3.503 | 1.880 | 1.161 | 6.108 | 3.520 |
2100 | 0.034 | 4.083 | 1.855 | 0.142 | 4.440 | 2.125 | 1.352 | 7.378 | 4.668 |
Year | RCP4.5 | RCP8.5 | HES | ||||||
---|---|---|---|---|---|---|---|---|---|
DD | AC0D | ACMD | DD | AC0D | ACMD | DD | AC0D | ACMD | |
2020 | 1.105 | 10.598 | 7.245 | 1.106 | 10.673 | 7.945 | 1.106 | 10.818 | 7.945 |
2030 | 1.106 | 10.818 | 7.945 | 1.106 | 10.818 | 7.945 | 1.116 | 11.768 | 8.080 |
2040 | 1.106 | 11.543 | 8.080 | 1.106 | 11.543 | 8.080 | 1.134 | 11.955 | 8.313 |
2050 | 1.106 | 11.543 | 8.080 | 1.125 | 11.768 | 8.168 | 1.135 | 12.568 | 9.038 |
2060 | 1.116 | 11.768 | 8.105 | 1.134 | 11.955 | 8.313 | 1.234 | 13.455 | 9.283 |
2070 | 1.125 | 11.793 | 8.868 | 1.135 | 12.165 | 9.038 | 2.153 | 14.013 | 10.490 |
2080 | 1.134 | 11.793 | 9.013 | 1.144 | 13.430 | 9.138 | 2.180 | 15.313 | 11.130 |
2090 | 1.134 | 12.655 | 9.038 | 1.234 | 13.455 | 9.308 | 3.265 | 16.345 | 12.363 |
2100 | 1.135 | 12.865 | 9.038 | 1.253 | 13.825 | 10.303 | 3.465 | 17.928 | 13.068 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra, J.P. Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise. Water 2019, 11, 1440. https://doi.org/10.3390/w11071440
Sierra JP. Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise. Water. 2019; 11(7):1440. https://doi.org/10.3390/w11071440
Chicago/Turabian StyleSierra, Joan Pau. 2019. "Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise" Water 11, no. 7: 1440. https://doi.org/10.3390/w11071440
APA StyleSierra, J. P. (2019). Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise. Water, 11(7), 1440. https://doi.org/10.3390/w11071440