Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs)
Abstract
:1. Introduction
2. Overview of Lake Development: Status, Ecosystem Services, and Management
2.1. Status
2.2. Ecosystem Services
2.3. Management and Policy
3. Challenges and Opportunities for the Sustainable Development of Lakes and Reservoirs
3.1. Emerging Threats and Challenges
3.2. Opportunities for Sustainable Development of Lakes and (Hydropower) Reservoirs
4. The Interlinkages between the Sustainable Development of Lakes and Reservoirs and the SDGs
4.1. Sustainable Development Goals of the 2030 Agenda
4.2. The Interlinkages between the Sustainable Development of Lakes and Reservoirs and the SDGs
4.3. Indicators of the Sustainable Development of Lakes and Reservoirs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jørgensen, S.E. Lake and Reservoir Management; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Schallenberg, M.; de Winton, M.D.; Verburg, P.; Kelly, D.; Hamill, K.; Hamilton, D. Ecosystem services of lakes. In Ecosystem Services in New Zealand—Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 203–225. [Google Scholar]
- Ricciardi, A.; MacIsaac, H. Impacts of biological invasions on freshwater ecosystems. In Fifty Years of Invasion Ecology; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ricciardi, A.; Neves, R.J.; Rasmussen, J.B. Impending extinctions of north american freshwater mussels (unionoida) following the zebra mussel (dreissena polymorpha) invasion. J. Anim. Ecol. 1998, 67, 613–619. [Google Scholar] [CrossRef]
- Moyle, P.B. The frankenstein effect: Impact of introduced fishes on native fishes in north america. In Fish Culture in Fisheries Management; Amer Fisheries Society: Bethesda, MD, USA, 1986. [Google Scholar]
- Allendorf, F.W. Ecological and genetic-effects of fish introductions-synthesis and recommendations. Can. J. Fish. Aquat. Sci. 1991, 48, 178–181. [Google Scholar] [CrossRef]
- Cole, J.J.; Caraco, N.F. Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism. Mar. Freshw. Res. 2001, 52, 101–110. [Google Scholar] [CrossRef]
- Sobek, S.; Algesten, G.; Bergstrom, A.K.; Jansson, M.; Tranvik, L.J. The catchment and climate regulation of pco(2) in boreal lakes. Glob. Chang. Biol. 2003, 9, 630–641. [Google Scholar] [CrossRef]
- Bastviken, D.; Cole, J.; Pace, M.; Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthington, A.H.; Dulvy, N.K.; Gladstone, W.; Winfield, I.J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. 2016, 26, 838–857. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects; Cambridge University Press: New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Edeline, E.; Groth, A.; Cazelles, B.; Claessen, D.; Winfield, I.J.; Ohlberger, J.; Vollestad, L.A.; Stenseth, N.C.; Ghil, M. Pathogens trigger top-down climate forcing on ecosystem dynamics. Oecologia 2016, 181, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; Molenaar, C.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Harrison, I.; Abell, R.; Darwall, W.; Thieme, M.L.; Tickner, D.; Timboe, I. The freshwater biodiversity crisis. Science 2018, 362, 1369. [Google Scholar] [PubMed]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vorosmarty, C.; Fekete, B.; Crouzet, P.; Doll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J. Global reservoir and dam (grand) database. Tech. Doc. Version 2011, 1, 1–14. [Google Scholar]
- Reynaud, A.; Lanzanova, D. A global meta-analysis of the value of ecosystem services provided by lakes. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Landuyt, D.; Lemmens, P.; D’hondt, R.; Broekx, S.; Liekens, I.; De Bie, T.; Declerck, S.A.J.; De Meester, L.; Goethals, P.L.M. An ecosystem service approach to support integrated pond management: A case study using bayesian belief networks-highlighting opportunities and risks. J. Environ. Manag. 2014, 145, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.T.; Everaert, G.; Boets, P.; Forio, M.A.E.; Bennetsen, E.; Volk, M.; Hoang, T.H.T.; Goethals, P.L.M. Modelling tools to analyze and assess the ecological impact of hydropower dams. Water 2018, 10, 259. [Google Scholar] [CrossRef]
- Boavida, I.; Santos, J.M.; Ferreira, T.; Pinheiro, A. Barbel habitat alterations due to hydropeaking. J. Hydro Environ. Res. 2015, 9, 237–247. [Google Scholar] [CrossRef]
- Kennedy, T.A.; Muehlbauer, J.D.; Yackulic, C.B.; Lytle, D.A.; Miller, S.W.; Dibble, K.L.; Kortenhoeven, E.W.; Metcalfe, A.N.; Baxter, C.V. Flow management for hydropower extirpates aquatic insects, undermining river food webs. Bioscience 2016, 66, 561–575. [Google Scholar] [CrossRef]
- Riascos, L.; Geerts, A.N.; Ona, T.; Goethals, P.; Cevallos-Cevallos, J.; Vanden Berghe, W.; Volckaert, F.A.M.; Bonilla, J.; Muylaert, K.; Velarde, E.; et al. DNA-based monitoring of the alien invasive north american crayfish procambarus clarkii in andean lakes (ecuador). Limnologica 2018, 70, 20–25. [Google Scholar] [CrossRef]
- Mereta, S.T.; Yewhalaw, D.; Boets, P.; Ahmed, A.; Duchateau, L.; Speybroeck, N.; Vanwambeke, S.O.; Legesse, W.; De Meester, L.; Goethals, P.L.M. Physico-chemical and biological characterization of anopheline mosquito larval habitats (diptera: Culicidae): Implications for malaria control. Parasit. Vectors 2013, 6, 320. [Google Scholar] [CrossRef] [PubMed]
- Bartram, A.; El-Bizri, N.; Gittens, D. Water quality monitoring: A practical guide to the design and implementation of freshwater quality studies and monitoring programmes. In Recto Verso: Redefining the Sketchbook; Routledge: Abingdon-on-Thames, UK, 2016; pp. 23–32. [Google Scholar]
- WHO. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Volume 3. [Google Scholar]
- Giripunje, M.D.; Fulke, A.B.; Meshram, P.U. Remediation techniques for heavy-metals contamination in lakes: A mini-review. Clean Soil Air Water 2015, 43, 1350–1354. [Google Scholar] [CrossRef]
- Brookes, J.D.; Antenucci, J.; Hipsey, M.; Burch, M.D.; Ashbolt, N.J.; Ferguson, C. Fate and transport of pathogens in lakes and reservoirs. Environ. Int. 2004, 30, 741–759. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, P.L.; Tobin, R.S.; Brown, N.E.; Ness, P.F. A prospective-study of swimming-related illness. 2. Morbidity and the microbiological quality of water. Am. J. Public Health 1985, 75, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- IHA. Hydropower Sustainability Guidelines; International Hydropower Association: London, UK, 2018. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; von Stechow, C. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Avnimelech, Y.; Verdegem, M.; Kurup, M.; Keshavanath, P. Sustainable land-based aquaculture: Rational utilization of water, land and feed resources. Mediterr. Aquac. J. 2008, 1, 45–55. [Google Scholar] [CrossRef]
- Thu, P.M.; Populus, J. Status and changes of mangrove forest in mekong delta: Case study in tra vinh, vietnam. Estuar. Coast. Shelf. Sci. 2007, 71, 98–109. [Google Scholar] [CrossRef]
- Fader, M.; Rost, S.; Muller, C.; Bondeau, A.; Gerten, D. Virtual water content of temperate cereals and maize: Present and potential future patterns. J. Hydrol. 2010, 384, 218–231. [Google Scholar] [CrossRef]
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.W.A.; Heinke, J.; von Bloh, W.; Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.T.; Van Echelpoel, W.; Goethals, P.L.M. Design of waste stabilization pond systems: A review. Water Res. 2017, 123, 236–248. [Google Scholar] [CrossRef]
- Ho, L.T.; Alvarado, A.; Larriva, J.; Pompeu, C.; Goethals, P. An integrated mechanistic modeling of a facultative pond: Parameter estimation and uncertainty analysis. Water Res. 2019, 151, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Mustajoki, J.; Hamalainen, R.P.; Marttunen, M. Participatory multicriteria decision analysis with web-hipre: A case of lake regulation policy. Environ. Modell. Softw. 2004, 19, 537–547. [Google Scholar] [CrossRef]
- Sondergaard, M.; Jeppesen, E.; Lauridsen, T.L.; Skov, C.; Van Nes, E.H.; Roijackers, R.; Lammens, E.; Portielje, R. Lake restoration: Successes, failures and long-term effects. J. Appl. Ecol. 2007, 44, 1095–1105. [Google Scholar] [CrossRef]
- Bednarek, A.T. Undamming rivers: A review of the ecological impacts of dam removal. Environ. Manag. 2001, 27, 803–814. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Lauridsen, T.L.; Davidson, T.A.; Liu, Z.; Mazzeo, N.; Trochine, C.; Özkan, K.; Jensen, H.S.; Trolle, D.; et al. Chapter 6-Biomanipulation as a restoration tool to combat eutrophication: Recent advances and future challenges. In Advances in Ecological Research; Woodward, G., Jacob, U., O’Gorman, E.J., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 47, pp. 411–488. [Google Scholar]
- Tallar, R.Y.; Suen, J.P. Measuring the aesthetic value of multifunctional lakes using an enhanced visual quality method. Water 2017, 9, 322. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Mannina, G.; Cosenza, A.; Viviani, G. Micropollutants throughout an integrated urban drainage model: Sensitivity and uncertainty analysis. J. Hydrol. 2017, 554, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Okeke, I.N.; Laxminarayan, R.; Bhutta, Z.A.; Duse, A.G.; Jenkins, P.; O’Brien, T.F.; Pablos-Mendez, A.; Klugman, K.P. Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infect. Dis. 2005, 5, 481–493. [Google Scholar] [CrossRef]
- Okeke, I.N.; Klugman, K.P.; Bhutta, Z.A.; Duse, A.G.; Jenkins, P.; O’Brien, T.F.; Pablos-Mendez, A.; Laxminarayan, R. Antimicrobial resistance in developing countries. Part II: Strategies for containment. Lancet Infect. Dis. 2005, 5, 568–580. [Google Scholar] [CrossRef]
- Xu, L.K.; Ouyang, W.Y.; Qian, Y.Y.; Su, C.; Su, J.Q.; Chen, H. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ. Pollut. 2016, 213, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Florke, M.; Barlund, I.; van Vliet, M.T.H.; Bouwman, A.F.; Wada, Y. Analysing trade-offs between sdgs related to water quality using salinity as a marker. Curr. Opin. Environ. Sustain. 2019, 36, 96–104. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, J.H.; Sun, P.Z.; Liu, J.S.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y.K. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; He, M.C.; Song, Y.H.; Tysklind, M.; Wu, J.Y. A bibliometric analysis of global research progress on pharmaceutical wastewater treatment during 1994–2013. Environ. Earth Sci. 2015, 73, 4995–5005. [Google Scholar] [CrossRef]
- Wang, B.; Pan, S.Y.; Ke, R.Y.; Wang, K.; Wei, Y.M. An overview of climate change vulnerability: A bibliometric analysis based on web of science database. Nat. Hazards 2014, 74, 1649–1666. [Google Scholar] [CrossRef]
- Vincon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Yao, X.L.; Zhang, Y.L.; Zhang, L.; Zhou, Y.Q. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs. J. Environ. Sci. 2018, 66, 274–285. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.J.; Si, F.Q.; Liu, C.; Wang, W.; Sun, Y.W.; Liu, W.Q.; Shan, C.G. Bibliometric analysis of greenhouse gas research on a global scale from 2000 to 2014. Curr. Sci. India 2018, 114, 1624–1631. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, L.A.; Hong, S. Global biodiversity research during 1900–2009: A bibliometric analysis. Biodivers. Conserv. 2011, 20, 807–826. [Google Scholar] [CrossRef]
- Sweileh, W.M.; Zyoud, S.H.; Al-Jabi, S.W.; Sawalha, A.F.; Shraim, N.Y. Drinking and recreational water-related diseases: A bibliometric analysis (1980–2015). Ann. Occup. Environ. Med. 2016, 28, 40. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.; Makarewicz, O.; Fischer, T.; Stein, C.; Pfeifer, Y.; Werner, G.; Pletz, M.W. The bigger picture: The history of antibiotics and antimicrobial resistance displayed by scientometric data. Int. J. Antimicrob. Agents 2014, 44, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, N.; Bagliniere, J.L.; Rigaud, C.; Gardes, C.; Masquilier, M.L.; Taverny, C. Bibliometric analysis of diadromous fish research from 1970s to 2010: A case study of seven species. Scientometrics 2011, 88, 929–947. [Google Scholar] [CrossRef]
- Jaric, I.; Cvijanovic, G.; Knezevic-Jaric, J.; Lenhardt, M. Trends in fisheries science from 2000 to 2009: A bibliometric study. Rev. Fish. Sci. 2012, 20, 70–79. [Google Scholar] [CrossRef]
- Hassan, S.U.; Haddawy, P.; Zhu, J. A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics 2014, 99, 549–579. [Google Scholar] [CrossRef]
- Jiang, H.C.; Qiang, M.S.; Lin, P. A topic modeling based bibliometric exploration of hydropower research. Renew. Sustain. Energy Rev. 2016, 57, 226–237. [Google Scholar] [CrossRef]
- Ding, L.Y.; Chen, L.Q.; Ding, C.Z.; Tao, J. Global trends in dam removal and related research: A systematic review based on associated datasets and bibliometric analysis. Chin. Geogr. Sci. 2019, 29, 1–12. [Google Scholar] [CrossRef]
- Emmer, A. Glofs in the wos: Bibliometrics, geographies and global trends of research on glacial lake outburst floods (web of science, 1979–2016). Nat. Hazard Earth Syst. 2018, 18, 813–827. [Google Scholar] [CrossRef]
- UN General Assembly. The 2030 Agenda for Sustainable Development; Resolution: Middlesbrough, UK, 2015. [Google Scholar]
- OECD. Measuring Distance to the SDG Targets 2017; The Organisation for Economic Co-operation and Development: Paris, France, 2018. [Google Scholar]
- Griggs, D.; Nilsson, M.; Stevance, A.; McCollum, D. A Guide to SDG Interactions: From Science to Implementation; International Council for Science: Paris, France, 2017. [Google Scholar]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A systematic study of sustainable development goal (sdg) interactions. Earths Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef]
- UN Water. Water and Sanitation Interlinkages across the 2030 Agenda for Sustainable Development; UN Water: Geneva, Switzerland, 2016. [Google Scholar]
- Branche, E. The multipurpose water uses of hydropower reservoir: The share concept. Comptes Phys. 2017, 18, 469–478. [Google Scholar] [CrossRef]
- Mugagga, F.; Nabaasa, B.B. The centrality of water resources to the realization of sustainable development goals (sdg). A review of potentials and constraints on the african continent. Int. Soil Water Conserv. 2016, 4, 215–223. [Google Scholar] [CrossRef]
- The United Nations. The United Nations World Water Development Report 2016: Water and Jobs; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2016. [Google Scholar]
- Lin, C.Y.C.; Liscow, Z.D. Endogeneity in the environmental kuznets curve: An instrumental variables approach. Am. J. Agric. Econ. 2013, 95, 268–274. [Google Scholar] [CrossRef]
- WCD. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams; Earthscan: London, UK, 2000. [Google Scholar]
- Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D. Impacts of agricultural land use on biological integrity: A causal analysis. Ecol. Appl. 2011, 21, 3128–3146. [Google Scholar] [CrossRef]
- Sinclair, R.G.; Jones, E.L.; Gerba, C.P. Viruses in recreational water-borne disease outbreaks: A review. J. Appl. Microbiol. 2009, 107, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Craun, G.F.; Calderon, R.L.; Craun, M.F. Outbreaks associated with recreational water in the united states. Int. J. Environ. Health Res. 2005, 15, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Dickens, C.; Rebelo, L.-M.; Nhamo, L. Guidelines and Indicators for Target 6.6 of the SDGs: “Change in the Extent of Water-Related Ecosystems Over Time”; International Water Management Institute: Colombo, Sri Lanka, 2017. [Google Scholar]
- Mekong River Commission. Mekong Climate Change Adaptation Strategy and Action Plan; Mekong River Commission: Vientiane, Laos, 2018. [Google Scholar]
- Ansar, A.; Flyvbjerg, B.; Budzier, A.; Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 2014, 69, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Arcadis. Hydropower Generation in the Context of the EU WFD; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Giguet-Covex, C.; Arnaud, F.; Poulenard, J.; Enters, D.; Reyss, J.L.; Millet, L.; Lazzaroto, J.; Vidal, O. Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water lake bourget, french alps. J. Paleolimnol. 2010, 43, 171–190. [Google Scholar] [CrossRef]
- Jenny, J.P.; Arnaud, F.; Dorioz, J.M.; Covex, C.G.; Frossard, V.; Sabatier, P.; Millet, L.; Reyss, J.L.; Tachikawa, K.; Bard, E.; et al. A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnol. Oceanogr. 2013, 58, 1395–1408. [Google Scholar] [CrossRef]
- Berga, L. The role of hydropower in climate change mitigation and adaptation: A review. Engineering 2016, 2, 313–318. [Google Scholar] [CrossRef]
- Boehlert, B.; Strzepek, K.M.; Gebretsadik, Y.; Swanson, R.; McCluskey, A.; Neumann, J.E.; McFarland, J.; Martinich, J. Climate change impacts and greenhouse gas mitigation effects on us hydropower generation. Appl. Energy 2016, 183, 1511–1519. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Hamududu, B.; Killingtveit, A. Assessing climate change impacts on global hydropower. Energies 2012, 5, 305–322. [Google Scholar] [CrossRef]
- Pittock, J. Better management of hydropower in an era of climate change. Water Altern. 2010, 3, 444–452. [Google Scholar]
- Gaudard, L.; Gilli, M.; Romerio, F. Climate change impacts on hydropower management. Water Resour. Manag. 2013, 27, 5143–5156. [Google Scholar] [CrossRef]
- Kim, U.; Kaluarachchi, J.J. Climate change impacts on water resources in the upper blue nile river basin, ethiopia. J. Am. Water Resour. Assoc. 2009, 45, 1361–1378. [Google Scholar] [CrossRef]
- Lauri, H.; de Moel, H.; Ward, P.J.; Rasanen, T.A.; Keskinen, M.; Kummu, M. Future changes in mekong river hydrology: Impact of climate change and reservoir operation on discharge. Hydrol. Earth Syst. Sci. 2012, 16, 4603–4619. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate-blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Davidson, T.A.; Trolle, D.; Sondergaard, M.; Lauridsen, T.L.; Beklioglu, M.; Brucet, S.; Volta, P.; Gonzalez-Bergonzoni, I.; et al. Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J. Limnol. 2014, 73, 88–111. [Google Scholar] [CrossRef]
- Havens, K.; Jeppesen, E. Ecological responses of lakes to climate change. Water 2018, 10, 917. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Fekete, B.M.; Meybeck, M.; Lammers, R.B. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Glob. Biogeochem. Cycles 2000, 14, 599–621. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S.; Chapin, M.C.; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011. [Google Scholar]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Ballinger, A.; Lake, P.S. Energy and nutrient fluxes from rivers and streams into terrestrial food webs. Mar. Freshw. Res. 2006, 57, 15–28. [Google Scholar] [CrossRef]
- Gratton, C.; Donaldson, J.; vander Zanden, M.J. Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast iceland. Ecosystems 2008, 11, 764–774. [Google Scholar] [CrossRef]
- Brönmark, C.; Hansson, L.A. The Biology of Lakes and Ponds; OUP Oxford: Oxford, UK, 2005. [Google Scholar]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerda, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the united nations sustainable development goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Szabo, S.; Nicholls, R.J.; Neumann, B.; Renaud, F.G.; Matthews, Z.; Sebesvari, Z.; AghaKouchak, A.; Bales, R.; Ruktanonchai, C.W.; Kloos, J.; et al. Making sdgs work for climate change hotspots. Environment 2016, 58, 24–33. [Google Scholar] [CrossRef]
- Ntona, M.; Morgera, E. Connecting sdg 14 with the other sustainable development goals through marine spatial planning. Mar. Policy 2018, 93, 214–222. [Google Scholar] [CrossRef]
- Brundtland Commission. Report of the World Commission on Environment and Development: Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
SDGs | Type of the Interlinkages | Roles of Lakes and (Hydropower) Reservoirs | Impact of Potential Actions on Lake Sustainability |
---|---|---|---|
SDG 1—No poverty | Direct potential conflict |
|
|
SDG 2—End hunger | Both direct potential conflict and synergy |
|
|
SDG 3—Good health and well-being | Both direct potential conflict and synergy |
|
|
SDG 6—Clean water and sanitation | Direct synergy |
|
|
SDG 7—Affordable and clean energy | Direct synergy |
|
|
SDG 8—Decent work and economic growth | Both direct potential conflict and synergy |
|
|
SDG 13—Climate action | Direct synergy |
|
|
SDG 14—Life below water | Direct synergy |
|
|
SDG 15—Life on land | Direct synergy |
|
|
No. | Proposed Indicators | Related Targets | Related SDGs |
---|---|---|---|
1 | Proportion of wastewater safely treated before being discharged into lakes and reservoirs (%) | 6.3.1 | SDG 6—Clean water and sanitation |
2 | Proportion of lakes and reservoirs with good ambient water quality (%) | 6.3.2 | |
3 | Level of water stress: freshwater withdrawal as a proportion of available freshwater resources (%) | 6.4.2 | |
4 | Proportion of lake and reservoir basins with an operational arrangement for water cooperation (%) | 6.5.2 | |
5 | Nationally derived extent of lakes and reservoirs (km2) | 6.6.1 | |
6 | Nationally derived quality of lakes and reservoirs (%) | ||
7 | Nationally derived quantity of lakes and reservoirs (million of m3 per annum) | ||
8 | Proportion of local administrative units with established and operational policies and procedures for participation of local communities in lake and reservoir management (%) | 6.b.1 | |
9 | Renewable energy from eco-friendly hydropower reservoirs shares in the total energy consumption (%) | 7.2.1 | SDG 7—Affordable and clean energy |
10 | Number of countries with (inter) national and local disaster risk reduction strategies involving the roles of lakes and reservoirs (number) | 13.1.1 | SDG 13—Climate action |
11 | Index of lake eutrophication and floating plastic debris density (number) | 14.1.1 | SDG 14—Life below water |
12 | Proportion of fish stocks within biologically sustainable levels in lakes and reservoirs (not overexploited) (%) | 14.4.1 | |
13 | Coverage of protected areas in relation to lakes and reservoirs (Exclusive Economic Zones) (%) | 14.5.1 | |
14 | Progress by countries in the degree of implementation of international instruments aiming to combat illegal, unreported and unregulated fishing in lakes and reservoirs (level of implementation: 1 lowest to 5 highest) | 14.6.1 | |
15 | Proportion of total research budget allocated to research in the field of lakes and reservoirs (%) | 14.a.1 | |
16 | Degree of application of a legal/regulatory/policy/institutional framework which recognizes and protects access rights for small-scale fisheries (level of implementation: 1 lowest to 5 highest) | 14.b.1 | |
17 | Average proportion of Freshwater Key Biodiversity Areas (KBAs) covered by protected areas (%) | 15.1.2 | SDG 15—Life on land |
18 | Proportion of lake and reservoir area with a long-term management plan (%) | 15.2.1 | |
19 | Proportion of forest area within legally established protected areas (%) | ||
20 | Proportion of lakes and reservoirs that is degraded over total area of lakes and reservoirs (%) | 15.3.1 | |
21 | Red List Index for freshwater species (number) | 15.5.1 | |
22 | Proportion of countries adopting relevant national legislation and adequately resourcing the prevention or control of invasive alien species in lakes and reservoirs (%) | 15.8.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. https://doi.org/10.3390/w11071462
Ho LT, Goethals PLM. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water. 2019; 11(7):1462. https://doi.org/10.3390/w11071462
Chicago/Turabian StyleHo, Long T., and Peter L. M. Goethals. 2019. "Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs)" Water 11, no. 7: 1462. https://doi.org/10.3390/w11071462
APA StyleHo, L. T., & Goethals, P. L. M. (2019). Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water, 11(7), 1462. https://doi.org/10.3390/w11071462