Irrigation Water Quality—A Contemporary Perspective
Abstract
:1. Introduction
2. Conventional Measures of Irrigation Water Quality
3. Impact of Contemporary Irrigation Water Quality Issues on Soil and Crop Quality
3.1. Emerging Contaminants: Organic Pollutants
3.1.1. Pharmaceuticals
3.1.2. Antibiotics
3.1.3. Steroids
3.1.4. Agrochemicals
3.1.5. Cyanotoxins and Mycotoxins
3.2. Biological Contaminants: Bacteria, Virus and Antibiotic Resistance
3.2.1. Pathogens
3.2.2. Antibiotic Resistance
3.3. Inorganic Contaminants: Geogenic Source and Nanomaterials
3.3.1. Geogenic Contaminants in Irrigation Water
3.3.2. Engineered Nanomaterials
4. Changing Quality of Water Sources Used for Irrigation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2015; U.S. Geological Survey: Reston, VA, USA, 2018.
- World Agriculture: Towards 2015/2030 an FAO Perspective; Bruinsma, J. (Ed.) Earthscan Publications Ltd.: London, UK, 2003; ISBN 9251048355. [Google Scholar]
- FAO. How to Feed the World in 2050. Insights Expert Meet. FAO 2009, 2050, 1–35. [Google Scholar] [CrossRef]
- Sauvé, S.; Desrosiers, M. A review of what is an emerging contaminant. Chem. Cent. J. 2014, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Identifying Future Drinking Water Contaminants; National Academies Press: Washington, DC, USA, 1999; ISBN 978-0-309-06432-3. [Google Scholar]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; United Nations Educational, Scientific and Cultural Organization: Paris, France, 22 March 2017. [Google Scholar]
- Hass, A.; Mingelgrin, U.; Fine, P. Heavy metals in soils irrigated with wastewater. In Treated Wastewater in Agriculture: Use and Impacts on the Soil Environment and Crops; Wiley-Blackwell: Hoboken, NJ, USA, 2010; ISBN 9781405148627. [Google Scholar]
- Allende, A.; Monaghan, J. Irrigation water quality for leafy crops: A perspective of risks and potential solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457–7477. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Ghosh, N.C.; Gurjar, S.; Krishan, G.; Kumar, S.; Berwal, P. Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environ. Monit. Assess. 2018, 190, 29. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Romić, D.; Akber, M.A.; Romić, M. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environ. Geochem. Health 2018, 40, 59–85. [Google Scholar] [CrossRef] [PubMed]
- Seiler, R.L.; Skorupa, J.P.; Naftz, D.L.; Nolan, B.T. Irrigation-Induced Contamination of Water, Sediment, and Biota in the Western United States—Synthesis of Data from the National Irrigation Water Quality Program; U.S. Geological Survey Professional Paper1655; U.S. Geological Survey: Reston, VA, USA, 2003.
- Servin, A.D.; De la Torre-Roche, R.; Castillo-Michel, H.; Pagano, L.; Hawthorne, J.; Musante, C.; Pignatello, J.; Uchimiya, M.; White, J.C. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol. Biochem. 2017, 110, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Ma, C.; White, J.C.; Dhankher, O.P.; Zhang, X.; Zhang, S.; Xing, B. Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon 2017, 114, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Hochella, M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, J.; Weber, K.A. Natural Uranium Contamination in Major U.S. Aquifers Linked to Nitrate. Environ. Sci. Technol. Lett. 2015, 2, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Sagasta, J.; Marjani, S.; Turral, H.; Burke, J. Water Pollution from Agriculture: A Global Review Executive Summary; The Food and Agriculture Organization of the United Nations: Rome, Italy; The International Water Management Institute: Colombo, Sri Lanka, 2017. [Google Scholar]
- Dexssen, A.; Dole, R.B. Ground Water in LaSalle and McMullen Counties; Texas. U.S. Geol. Surv. Water-Supply Paper 375-G; U.S. GPO: Washington, DC, USA, 1916.
- Schwennesen, A.T.; Forbes, R.H. Ground Water in San Simon Valley, Arizona and New Mexico; Water-Supply Paper 425-A; U.S. GPO: Washington, DC, USA, 1917.
- Clark, W.O. Ground Water for Irrigation in the Morgan Hill Area, California; Water-Supply Paper 400-E; U.S. GPO: Washington, DC, USA, 1917.
- Scofield, C.S.; Headley, F.B. Quality of irrigation water in relation to land reclamation. J. Agric. Res. 1921, 21, 265–278. [Google Scholar] [CrossRef]
- Sturdy, D.; Calton, W.E.; Milne, G. A chemical survey of the waters of Mount Meru, Tanganyika Territory, especially with regard to their qualities for irrigation. J. East Afr. Uganda Nat. Hist. Soc. 1932, 45–46, 1–38. [Google Scholar]
- Taylor, E.M.; Puri, A.N.; Asghar, A.G. Soil deterioration in the canal-irrigated areas of the Punjab. I. Equilibrium between calcium and sodium ions in base-exchange reactions. Res. Publ. 1934, 4, 7. [Google Scholar]
- Mados, L. The qualifications of irrigation waters. Mezogazdasagi Kut 1940, 12, 121–131. [Google Scholar]
- Eaton, F.M.; McCallum, R.D.; Mayhugh, M.S. Quality of Irrigation Waters of the Hollister area of California with Special Reference to Boron Content and Its Effect on Apricots and Prunes; Technical Bulletin; United States Department Agriculture: Washington, DC, USA, 1941; Volume 746, p. 59.
- Wilcox, L.V. The quality of water for irrigation use. U.S. Dept. Agr. Tech. Bull. 1948, 962, 40. [Google Scholar]
- Pacheco, J.d.l.R.; Lopez-Rubio, F.B. Analysis of waters for agricultural uses. Inf. Quim. Anal. 1949, 3, 90–96. [Google Scholar]
- Thorne, D.W.; Thorne, J.P. Changes in composition of irrigated soils as related to the quality of irrigation waters. Soil Sci. Soc. Am. Proc. 1949, 18, 92–97. [Google Scholar] [CrossRef]
- Lewis, G.C.; Juve, R.L. Some effects of irrigation-water quality on soil characteristics. Soil Sci. 1956, 81, 125–137. [Google Scholar] [CrossRef]
- Pearson, H.E.; Huberty, M.R. Response of citrus to irrigation with waters of different chemical characteristics. Proc. Am. Soc. Hortic. Sci. 1959, 73, 248–256. [Google Scholar]
- Babcock, K.L.; Carlson, R.M.; Schulz, R.K.; Overstreet, R. A study of the Effect of irrigation water composition on soil properties. Hilgardia 1959, 29, 155–170. [Google Scholar] [CrossRef]
- Longenecker, D.E.; Lyerly, P.J. Chemical characteristics of soils of west Texas as affected by irrigation water quality. Soil Sci. 1959, 87, 207–216. [Google Scholar] [CrossRef]
- Bernstein, L. Quantitative assessment of irrigation water quality. In Water Quality Criteria; Bramer, H., Ed.; ASTM International: West Conshohocken, PA, USA, 1967; pp. 51–65. [Google Scholar]
- Park, D.M.; White, S.A.; McCarty, L.B.; Menchyk, N.A. Interpreting Irrigation Water Quality Reports; CU-14-700; Clemson University Cooperative Extension: Clemson, SC, USA, 2014. [Google Scholar]
- Frenkel, H. Reassessment of Water Quality Criteria for Irrigation. Ecol. Stud. Anal. Synth. 1984, 51, 142–172. [Google Scholar]
- Bauder, T.; Waskom, R.; Davis, J.; Sutherland, P. Irrigation water quality criteria. Crop Ser. Irrig. Fact Sheet 2007, 506, 10–13. [Google Scholar]
- Feltz, H.; Engberg, R.; Sylvester, M. Investigations of water quality, bottom sediment, and biota associated with irrigation drainage in the western United States. In Proceedings of the International Symposium on the Hydrologic Basis for Water Resources Management, Beijing, China, 23–26 October 1990. Publ. no. 197. [Google Scholar]
- Seiler, R.L. Synthesis of data from studies by the national irrigation water-quality program. J. Am. Water Resour. Assoc. 1996, 32, 1233–1245. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 31. [Google Scholar] [CrossRef]
- Intawongse, M.; Dean, J.R. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit. Contam. 2006, 23, 36–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; White, J.C.; Zhao, J.; Zhao, Q.; Xing, B. Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. Annu. Rev. Food Sci. Technol. 2018, 9, 129–153. [Google Scholar] [CrossRef]
- Calderón-Preciado, D.; Matamoros, V.; Bayona, J.M. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network. Sci. Total Environ. 2011, 412–413, 14–19. [Google Scholar] [CrossRef]
- Sedlak, D.L.; Gray, J.L.; Pinkston, K.E. Peer reviewed: Understanding microcontaminants in recycled water. Environ. Sci. Technol. 2000, 34, 508A–515A. [Google Scholar] [CrossRef]
- IOM (Institute of Medicine) and NRC (National Research Council). A Framework for Assessing Effects of the Food System; The National Academic Press: Washington, DC, USA, 2015; ISBN 978-0-309-30780-2. [Google Scholar]
- World Health Organization. Pharmaceuticals in Drinking Water; WHO: Geneva, Switerland, 2012; ISBN 9789241502085. [Google Scholar]
- Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017, 137, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Balakrishna, K.; Joshua, D.I.; Kannan, K. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 2017, 167, 429–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subedi, B.; Lee, S.; Moon, H.B.; Kannan, K. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea. Environ. Int. 2014, 68, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Conkle, J.L.; Ernst, F.; Gan, J. Treated wastewater irrigation: Uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ. Sci. Technol. 2014, 48, 11286–11293. [Google Scholar] [CrossRef]
- Santiago, S.; Roll, D.M.; Ray, C.; Williams, C.; Moravcik, P.; Knopf, A. Effects of soil moisture depletion on vegetable crop uptake of pharmaceuticals and personal care products (PPCPs). Environ. Sci. Pollut. Res. 2016, 23, 20257–20268. [Google Scholar] [CrossRef]
- Riemenschneider, C.; Al-Raggad, M.; Moeder, M.; Seiwert, B.; Salameh, E.; Reemtsma, T. Pharmaceuticals, their metabolites, and other polar pollutants in field-grown vegetables irrigated with treated municipal wastewater. J. Agric. Food Chem. 2016, 64, 5784–5792. [Google Scholar] [CrossRef]
- Colon, B.; Toor, G.S. A review of uptake and translocation of pharmaceuticals and personal care products by food crops irrigated with treated wastewater. Adv. Agron. 2016, 140, 75–100. [Google Scholar]
- Calderón-Preciado, D.; Jiménez-Cartagena, C.; Matamoros, V.; Bayona, J.M. Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res. 2011, 45, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [PubMed]
- Williams-Nguyen, J.; Sallach, J.B.; Bartelt-Hunt, S.; Boxall, A.B.; Durso, L.M.; McLain, J.E.; Singer, R.S.; Snow, D.D.; Zilles, J.L. Antibiotics and antibiotic resistance in agroecosystems: State of the science. J. Environ. Qual. 2016, 45, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Durso, L.M.; Cook, K.L. Impacts of antibiotic use in agriculture: What are the benefits and risks? Curr. Opin. Microbiol. 2014, 19, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part II. Chemosphere 2009, 75, 435–441. [Google Scholar] [CrossRef]
- Behera, S.K.; Kim, H.W.; Oh, J.E.; Park, H.S. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011, 409, 4351–4360. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhao, J.L.; Yang, B.; Chen, Z.F.; Lai, H.J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total Environ. 2013, 452–453, 365–376. [Google Scholar] [CrossRef]
- Aga, D.S.; Lenczewski, M.; Snow, D.; Muurinen, J.; Sallach, J.B.; Wallace, J.S. Challenges in the measurement of antibiotics and in evaluating their impacts in agroecosystems: A critical review. J. Environ. Qual. 2016, 45, 407–419. [Google Scholar] [CrossRef]
- Burkholder, J.A.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of waste from concentrated animal feeding operations on water quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef]
- Chang, X.; Meyer, M.T.; Liu, X.; Zhao, Q.; Chen, H.; Chen, J.A.; Qiu, Z.; Yang, L.; Cao, J.; Shu, W. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environ. Pollut. 2010, 158, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.A.; Pham, N.H.; Nguyen, H.T.; Hoang, T.T.; Pham, H.V.; Pham, V.C.; Berg, M.; Giger, W.; Alder, A.C. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere 2008, 72, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 2013, 175, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, N.; Zheng, H.; Lin, H. Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicol. Environ. Saf. 2016, 125, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, E.; Castiglioni, S.; Bagnati, R.; Melis, M.; Fanelli, R. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J. Hazard. Mater. 2010, 179, 1042–1048. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Rajapaksha, A.U.; Lim, J.E.; Vu, N.T.; Kim, I.S.; Kang, H.M.; Lee, S.S.; Ok, Y.S. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J. Agric. Food Chem. 2015, 63, 398–405. [Google Scholar] [CrossRef]
- Chitescu, C.L.; Nicolau, A.I.; Stolker, A.A.M. Uptake of oxytetracycline, sulfamethoxazole and ketoconazole from fertilised soils by plants. Food Addit. Contam. Part A 2013, 30, 1138–1146. [Google Scholar] [CrossRef]
- Sallach, J.B.; Bartelt-Hunt, S.L.; Snow, D.D.; Li, X.; Hodges, L. Uptake of antibiotics and their toxicity to lettuce following routine irrigation with contaminated water in different soil types. Environ. Eng. Sci. 2018, 35. [Google Scholar] [CrossRef]
- Azanu, D.; Mortey, C.; Darko, G.; Weisser, J.J.; Styrishave, B.; Abaidoo, R.C. Uptake of antibiotics from irrigation water by plants. Chemosphere 2016, 157, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I.; Casewell, M.; Cox, T.; De Groot, B.; Friis, C.; Jones, R.; Nightingale, C.; Preston, R.; Waddell, J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 2004, 53, 28–52. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.E.; Lee, Y.B. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Bedford, M. Removal of antibiotic growth promoters from poultry diets: Implications and strategies to minimise subsequent problems. Worlds Poult. Sci. J. 2000, 56, 347–365. [Google Scholar] [CrossRef]
- Schuijt, T.J.; van der Poll, T.; de Vos, W.M.; Wiersinga, W.J. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol. 2013, 21, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- Zhang, F.S.; Xie, Y.F.; Li, X.W.; Wang, D.Y.; Yang, L.S.; Nie, Z.Q. Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China. Sci. Total Environ. 2015, 538, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Donk, S.v.; Biswas, S.; Kranz, W.; Snow, D.; Bartelt-Hunt, S.; Mader, T.; Shapiro, C.; Shelton, D.; Tarkalson, D.; Zhang, T.; et al. Transport of steroid hormones in the vadose zoneafter land application of beef cattle manure. Biol. Syst. Eng. Pap. Publ. 2013, 56, 1327–1338. [Google Scholar]
- Bartelt-Hunt, S.; Snow, D.D.; Damon-Powell, T.; Miesbach, D. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J. Contam. Hydrol. 2011, 123, 94–103. [Google Scholar] [CrossRef]
- Torres, N.H.; Aguiar, M.M.; Ferreira, L.F.R.; Américo, J.H.P.; Machado, Â.M.; Cavalcanti, E.B.; Tornisielo, V.L. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. Environ. Monit. Assess. 2015, 187, 379. [Google Scholar] [CrossRef]
- Pauwels, B.; Noppe, H.; De Brabander, H.; Verstraete, W. Comparison of steroid hormone concentrations in domestic and hospital wastewater treatment plants. J. Environ. Eng. 2008, 134, 933–936. [Google Scholar] [CrossRef]
- Servos, M.R.; Bennie, D.T.; Burnison, B.K.; Jurkovic, A.; McInnis, R.; Neheli, T.; Schnell, A.; Seto, P.; Smyth, S.A.; Ternes, T.A. Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci. Total Environ. 2005, 336, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.; Siegrist, H.; Halling-Sørensen, B.; Ternes, T.A. Fate of estrogens in a municipal sewage treatment plant. Environ. Sci. Technol. 2003, 37, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Baronti, C.; Curini, R.; D’Ascenzo, G.; Di Corcia, A.; Gentili, A.; Samperi, R. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ. Sci. Technol. 2000, 34, 5059–5066. [Google Scholar] [CrossRef]
- Sellin, M.K.; Snow, D.D.; Akerly, D.L.; Kolok, A.S. Estrogenic compounds downstream from three small cities in Eastern Nebraska: Occurrence and biological effect. J. Am. Water Resour. Assoc. 2009, 45, 14–21. [Google Scholar] [CrossRef]
- Yarahmadi, H.; Duy, S.V.; Hachad, M.; Dorner, S.; Sauvé, S.; Prévost, M. Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases. Sci. Total Environ. 2018, 635, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wiles, K.N.; Holm, N.; Deppe, N.A.; Shipley, C.R. Uptake, Translocation, and Accumulation of Pharmaceutical and Hormone Contaminants in Vegetables. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2014; Volume 1171, pp. 167–181. [Google Scholar]
- Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int. 2017, 99, 107–119. [Google Scholar] [CrossRef]
- Rose, S.C.; Carter, A.D. Agrochemical leaching and water contamination. In Conservation Agriculture; Springer: Dordrecht, The Netherlands, 2003; pp. 417–424. [Google Scholar]
- Jimoh, O.D.; Ayodeji, M.A.; Mohammed, B. Effects of agrochemicals on surface waters and groundwaters in the Tunga-Kawo (Nigeria) irrigation scheme. Hydrol. Sci. J. 2003, 48, 1013–1023. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, S.; Yang, Y.; Zhao, X.; Xue, J.; Zhang, J.; Gao, S.; Yang, A. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013. BMC Public Health 2017, 18, 91. [Google Scholar] [CrossRef]
- Retention, uptake, and translocation of agrochemicals in plants. In ACS Symposium Series; Myung, K.; Satchivi, N.M.; Kingston, C.K. (Eds.) American Chemical Society: Washington, DC, USA, 2014; Volume 1171, ISBN 0-8412-2972-4. [Google Scholar]
- Juraske, R.; Castells, F.; Vijay, A.; Muñoz, P.; Antón, A. Uptake and persistence of pesticides in plants: Measurements and model estimates for imidacloprid after foliar and soil application. J. Hazard. Mater. 2009, 165, 683–689. [Google Scholar] [CrossRef]
- Elmore, S.A.; Boorman, G.A. Environmental toxicologic pathology and human health. Haschek Rousseaux’s Handb. Toxicol. Pathol. 2013, 1029–1049. [Google Scholar] [CrossRef]
- US Protection Agency. Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems; EPA-810F11001; USEPA: Washington, DC, USA, 2014.
- Crush, J.R.; Briggs, L.R.; Sprosen, J.M.; Nichols, S.N. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environ. Toxicol. 2008, 23, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Corbel, S.; Mougin, C.; Bouaïcha, N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 2014, 96, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Loftin, K.A.; Graham, J.L.; Hilborn, E.D.; Lehmann, S.C.; Meyer, M.T.; Dietze, J.E.; Griffith, C.B. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 2016, 56, 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sammak, M.A.; Hoagland, K.D.; Cassada, D.; Snow, D.D. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 2014, 6, 488–508. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Russell, C. Food crops irrigated with cyanobacteria-contaminated water: An emerging public health issue in Canada. Environ. Heal. Rev. 2017, 60, 58–63. [Google Scholar] [CrossRef]
- Saqrane, S.; Oudra, B. CyanoHAB occurrence and water irrigation cyanotoxin contamination: Ecological impacts and potential health risks. Toxins 2009, 1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Abeysiriwardena, N.M.; Gascoigne, S.J.L.; Anandappa, A. Algal bloom expansion increases cyanotoxin risk in food. Yale J. Biol. Med. 2018, 91, 129–142. [Google Scholar] [PubMed]
- Al-Gabr, H.M.; Zheng, T.; Yu, X. Fungi contamination of drinking water. Rev. Environ. Contam. Toxicol. 2014, 228, 121–139. [Google Scholar] [PubMed]
- Oliveira, B.R.; Mata, A.T.; Ferreira, J.P.; Barreto Crespo, M.T.; Pereira, V.J.; Bronze, M.R. Production of mycotoxins by filamentous fungi in untreated surface water. Environ. Sci. Pollut. Res. 2018, 25, 17519–17528. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Hoerger, C.C.; Meyer, M.T.; Wettstein, F.E.; Hubbard, L.E.; Bucheli, T.D. Phytoestrogens and mycotoxins in Iowa streams: An examination of underinvestigated compounds in agricultural basins. J. Environ. Qual. 2010, 39, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.J.; Govindaraju, G.; Sivasithamparam, N.; Shanmugasundaram, E.R.B. Uptake, translocation and persistence of mycotoxins in rice seedlings. Plant Soil 1982, 66, 121–123. [Google Scholar] [CrossRef]
- Mohammad-Hasani, F.; Mirlohi, M.; Mosharraf, L.; Hasanzade, A. Occurrence of aflatoxins in wheat flour specified for sangak bread and its reduction through fermentation and baking. Qual. Assur. Saf. Crop. Foods 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Tola, M.; Kebede, B. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric. 2016. [Google Scholar] [CrossRef]
- Tanaka, H.; Asano, T.; Schroeder, E.D.; Tchobanoglous, G. Estimating the safety of wastewater reclamation and reuse using enteric virus monitoring data. Water Environ. Res. 1998, 70, 39–51. [Google Scholar] [CrossRef]
- Asano, T.; Cotruvo, J.A. Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Res. 2004, 38, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Lothrop, N.; Bright, K.R.; Sexton, J.; Pearce-Walker, J.; Reynolds, K.A.; Verhougstraete, M.P. Optimal strategies for monitoring irrigation water quality. Agric. Water Manag. 2018, 199, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Jongman, M.; Chidamba, L.; Korsten, L. Bacterial biomes and potential human pathogens in irrigation water and leafy greens from different production systems described using pyrosequencing. J. Appl. Microbiol. 2017, 123, 1043–1053. [Google Scholar] [CrossRef]
- Truchado, P.; Hernandez, N.; Gil, M.I.; Ivanek, R.; Allende, A. Correlation between E. coli levels and the presence of foodborne pathogens in surface irrigation water: Establishment of a sampling program. Water Res. 2018, 128, 226–233. [Google Scholar] [CrossRef]
- Steele, M.; Odumeru, J. Irrigation water as source of foodborne pathogens on fruit and vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Shelton, D.R.; McLain, J.E.T.; Patel, J.; Mandrell, R.E. Irrigation waters as a source of pathogenic microorganisms in produce: A review. Adv. Agron. 2011, 113, 75–141. [Google Scholar] [CrossRef]
- Park, S.; Szonyi, B.; Gautam, R.; Nightingale, K.; Anciso, J.; Ivanek, R. Risk factors for microbial contamination in fruits and vegetables at the preharvest level: A systematic review. J. Food Prot. 2012, 75, 2055–2081. [Google Scholar] [CrossRef] [PubMed]
- Jongman, M.; Korsten, L. Irrigation water quality and microbial safety of leafy greens in different vegetable production systems: A review. Food Rev. Int. 2018, 34, 308–328. [Google Scholar] [CrossRef]
- Herman, K.M.; Hall, A.J.; Gould, L.H. Outbreaks attributed to fresh leafy vegetables, United States, 1973–2012. Epidemiol. Infect. 2015, 143, 3011–3021. [Google Scholar] [CrossRef] [PubMed]
- National Outbreak Reporting System (NORS) Dashboard | CDC. Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 25 March 2019).
- Multistate Outbreak of E. coli O157:H7 Infections Linked to Romaine Lettuce (Final Update) | Investigation Notice: Multistate Outbreak of E. coli O157:H7 Infections April 2018 | E. coli | CDC. Available online: https://www.cdc.gov/ecoli/2018/o157h7-04-18/index.html (accessed on 25 March 2019).
- Outbreak of E. coli Infections Linked to Romaine Lettuce | E. coli Infections Linked to Romaine Lettuce | November 2018 | E. coli | CDC. Available online: https://www.cdc.gov/ecoli/2018/o157h7-11-18/index.html (accessed on 25 March 2019).
- FDA Investigation of a Multistate Outbreak of Cyclospora Illnesses Linked to Fresh Express Salad Mix Served at McDonald’s Ends | FDA. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/fda-investigation-multistate-outbreak-cyclospora-illnesses-linked-fresh-express-salad-mix-served#Cyclospora (accessed on 3 July 2019).
- Olivieri, A.W.; Seto, E.; Cooper, R.C.; Cahn, M.D.; Colford, J.; Crook, J.; Debroux, J.-F.; Mandrell, R.; Suslow, T.; Tchobanoglous, G.; et al. Risk-based review of California’s water-recycling criteria for agricultural irrigation. J. Environ. Eng. 2014, 140, 04014015. [Google Scholar] [CrossRef]
- Leaman, S.; Gorny, J.; Wetherington, D.; Belkris, H. Agricultural Water: Five Year Research Review; Center for Produce Safety: Davis, CA, USA, 2014. [Google Scholar]
- U.S. EPA. Regulations Governing Agricultural Use of Municipal Wastewater and Sludge; National Academy Press: Washington, DC, USA, 1996; ISBN 0309054796.
- Jones, L.A.; Worobo, R.W.; Smart, C.D. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water. Appl. Environ. Microbiol. 2014, 80, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Uyttendaele, M.; Jaykus, L.A.; Amoah, P.; Chiodini, A.; Cunliffe, D.; Jacxsens, L.; Holvoet, K.; Korsten, L.; Lau, M.; McClure, P.; et al. Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 2015, 14, 336–356. [Google Scholar] [CrossRef]
- World Health Organization World Health Organization (WHO): Antibiotic Resistance—Fact Sheet. Available online: https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 26 June 2019).
- Perry, J.A.; Wright, G.D. The antibiotic resistance “mobilome”: Searching for the link between environment and clinic. Front. Microbiol. 2013, 4, 138. [Google Scholar] [CrossRef]
- Marti, E.; Variatza, E.; Balcazar, J.L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014, 22, 36–41. [Google Scholar] [CrossRef]
- Bergeron, S.; Brown, R.; Homer, J.; Rehage, S.; Boopathy, R. Presence of antibiotic resistance genes in different salinity gradients of freshwater to saltwater marshes in southeast Louisiana, USA. Int. Biodeterior. Biodegrad. 2016, 113, 80–87. [Google Scholar] [CrossRef]
- Pepper, I.; Brooks, J.P.; Gerba, C.P. Antibiotic resistant bacteria in municipal wastes: Is there reason for concern? Environ. Sci. Technol. 2018, 52, 3949–3959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Fahrenfeld, N.; Ma, Y.; O’Brien, M.; Pruden, A. Reclaimed water as a reservoir of antibiotic resistance genes: Distribution system and irrigation implications. Front. Microbiol. 2013, 4, 130. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.; Cole, Z.; Bhattacharya, A.; Oyibo, O.; Aslan, A.; Cole, Z.; Bhattacharya, A.; Oyibo, O. Presence of antibiotic-resistant Escherichia coli in wastewater treatment plant effluents utilized as water reuse for irrigation. Water 2018, 10, 805. [Google Scholar] [CrossRef]
- Gekenidis, M.-T.; Qi, W.; Hummerjohann, J.; Zbinden, R.; Walsh, F.; Drissner, D. Antibiotic-resistant indicator bacteria in irrigation water: High prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. PLoS ONE 2018, 13, e0207857. [Google Scholar] [CrossRef] [PubMed]
- Farkas, A.; Bocoş, B.; Butiuc-Keul, A. Antibiotic resistance and intI1 carriage in waterborne enterobacteriaceae. Water Air Soil Pollut. 2016, 227, 251. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Vital, P.G.; Zara, E.S.; Paraoan, C.E.M.; Dimasupil, M.A.Z.; Abello, J.J.M.; Santos, I.T.G.; Rivera, W.L. Antibiotic resistance and extended-spectrum beta-lactamase production of escherichia coli isolated from irrigationwaters in selected urban farms in Metro Manila, Philippines. Water 2018, 10, 548. [Google Scholar] [CrossRef]
- Fipps, G. Irrigation Water Quality Standards and Salinity Management Strategies; Texas Agriculture Extension Service 7-96 Rev edition; Texas A&M University System: College Station, TX, USA, 1996. [Google Scholar]
- Stoner, J.D. Water-Quality Indices for Specific Water Uses; Circulur 770; United States Department of the Interior, Geological Survey: Arlington, VA, USA, 1978. [CrossRef]
- Ayotte, J.D.; Gronberg, J.A.M.; Apodaca, L.E. Trace Elements and Radon in Groundwater across the United States, 1992–2003; Scientific Investigations Report 2011–5059; U.S. Geological Survey: Reston, VA, USA, 2011; Volume i–xi, pp. 1–115.
- Welch, A.H.; Westjohn, D.B.; Helsel, D.R.; Wanty, R.B. Arsenic in ground water of the United States: Occurrence and geochemistry. Ground Water 2000, 38, 589–604. [Google Scholar] [CrossRef]
- Rodriǵuez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef]
- Selck, B.J.; Carling, G.T.; Kirby, S.M.; Hansen, N.C.; Bickmore, B.R.; Tingey, D.G.; Rey, K.; Wallace, J.; Jordan, J.L. Investigating anthropogenic and geogenic sources of groundwater contamination in a semi-arid alluvial basin, Goshen Valley, UT, USA. Water Air Soil Pollut. 2018, 229, 186. [Google Scholar] [CrossRef]
- Signes-Pastor, A.J.; Mitra, K.; Sarkhel, S.; Hobbes, M.; Burló, F.; De Groot, W.T.; Carbonell-Barrachina, A.A. Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. J. Agric. Food Chem. 2008, 56, 9469–9474. [Google Scholar] [CrossRef] [PubMed]
- Erban, L.E.; Gorelick, S.M.; Fendorf, S. Arsenic in the multi-aquifer system of the Mekong Delta, Vietnam: Analysis of large-scale spatial trends and controlling factors. Environ. Sci. Technol. 2014, 48, 6081–6088. [Google Scholar] [CrossRef] [PubMed]
- Huhmann, B.; Harvey, C.F.; Uddin, A.; Choudhury, I.; Ahmed, K.M.; Duxbury, J.M.; Ellis, T.; van Geen, A. Inversion of high-arsenic soil for improved rice yield in Bangladesh. Environ. Sci. Technol. 2019, 53, 3410–3418. [Google Scholar] [CrossRef] [PubMed]
- Pick, T. Assessing Water Quality for Human Consumption, Agriculture, and Aquatic Life Uses; United States Department of Agriculture: Washington, DC, USA, 2011.
- U.S. EPA. Guidelines for Water Reuse 2012; US Agency for International Development: Washington, DC, USA, 2012; p. 643.
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agricultural Organization, United Nations: Rome, Italy, 1976. [Google Scholar]
- Kandakji, T.; Udeigwe, T.K.; Dixon, R.; Li, L. Groundwater-induced alterations in elemental concentration and interactions in semi-arid soils of the Southern High Plains, USA. Environ. Monit. Assess. 2015, 187, 665. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Nicot, J.P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D.K. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Appl. Geochem. 2009, 24, 2061–2071. [Google Scholar] [CrossRef]
- Malan, M.; Müller, F.; Cyster, L.; Raitt, L.; Aalbers, J. Heavy metals in the irrigation water, soils and vegetables in the Philippi horticultural area in the Western Cape Province of South Africa. Environ. Monit. Assess. 2015, 187, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in Plants. Front. Plant Sci. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Hakonson-Hayes, A.C.; Fresquez, P.R.; Whicker, F.W. Assessing potential risks from exposure to natural uranium in well water. J. Environ. Radioact. 2002, 59, 29–40. [Google Scholar] [CrossRef]
- Islam, S.M.A.; Fukushi, K.; Yamamoto, K. Contamination of agricultural soil by arsenic containing irrigation water in Bangladesh: Overview of status and a proposal for novel biological remediation. WIT Trans. Biomed. Heal. 2006, 6, 295–316. [Google Scholar] [CrossRef]
- Jeambrun, M.; Pourcelot, L.; Mercat, C.; Boulet, B.; Pelt, E.; Chabaux, F.; Cagnat, X.; Gauthier-Lafaye, F. Potential sources affecting the activity concentrations of 238U, 235U, 232Th and some decay products in lettuce and wheat samples. J. Environ. Monit. 2012, 14, 2902–2912. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Ajwa, H.A.; Caceres, L.; Dyer, D. Germination responses and boron accumulation in germplasm from Chile and the United States grown with boron-enriched water. Ecotoxicol. Environ. Saf. 1999, 43, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, J.D.; Bingham, F.T.; Letey, J.; Hoffman, G.J.; Dedrick, A.R.; Pinter, P.J.; Replogle, J.A. Use of saline drainage water for irrigation: Imperial Valley study. Agric. Water Manag. 1989, 16, 25–36. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Horneck, D.A.; Stevens, R.G.; Ellsworth, J.W.; Sullivan, D.M. Managing Irrigation Water Quality for Crop Production in the Pacific Northwest; PNW597-E; USDA: Washington, DC, USA, 2007. Available online: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw597.pdf (accessed on 19 March 2019).
- Hem, J.D. Chemistry and occurrence of cadmium and zinc in surface water and groundwater cadmium is reported of compounds in rice. Water Resour. Res. 1972, 8, 661–679. [Google Scholar] [CrossRef]
- Alexakis, D. Assessment of water quality in the Messolonghi-Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods. Environ. Monit. Assess. 2011, 182, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Irmak, S. Copper correlation of irrigation water, soils and plants in the Cukurova Region of Turkey. Int. J. Soil Sci. 2009, 4, 46–56. [Google Scholar] [CrossRef]
- Manning, A.H.; Mills, C.T.; Morrison, J.M.; Ball, L.B. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA. Appl. Geochem. 2015, 62, 186–199. [Google Scholar] [CrossRef]
- Stasinos, S.; Zabetakis, I. The uptake of nickel and chromium from irrigation water by potatoes, carrots and onions. Ecotoxicol. Environ. Saf. 2013, 91, 122–128. [Google Scholar] [CrossRef]
- USEPA. 2018 Edition of the Drinking Water Standards and Health Advisories; USEPA: Washington, DC, USA, 2018.
- Gurel, M.; Iskender, G.; Ovez, S.; Arslan-Alaton, I.; Tanik, A.; Orhon, D. A global overview of treated wastewater guidelines and standards for agricultural reuse. Fresenius Environ. Bull. 2007, 16, 590–595. [Google Scholar]
- Pescod, M.B. Wastewater Treatment and Use in Agriculture; Food and Agricultural Organization, United Nations: Rome, Italy, 1992; ISBN 9251031355. [Google Scholar]
- US EPA. National Recommended Water Quality Criteria—Aquatic Life Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 27 December 2018).
- Groschen, G.E.; Arnold, T.L.; Morrow, W.S.; Warner, K.L. Occurrence and Distribution of Iron, Manganese, and Selected Trace elements in Ground Water in the Glacial Aquifer System of the Northern United States; U.S. Geological Survey Scientific Investigations Report 2009–5006; USGS: Reston, VA, USA, 2008.
- Bundschuh, J.; Nath, B.; Bhattacharya, P.; Liu, C.W.; Armienta, M.A.; Moreno López, M.V.; Lopez, D.L.; Jean, J.S.; Cornejo, L.; Lauer Macedo, L.F.; et al. Arsenic in the human food chain: The Latin American perspective. Sci. Total Environ. 2012, 429, 92–106. [Google Scholar] [CrossRef]
- Meharg, A.A.; Rahman, M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 2003, 37, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, P.M.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Davis, A.P.; Kim, K.W. Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol. 2003, 37, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Bakhat, H.F.; Zia, Z.; Fahad, S.; Abbas, S.; Hammad, H.M.; Shahzad, A.N.; Abbas, F.; Alharby, H.; Shahid, M. Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. Environ. Sci. Pollut. Res. 2017, 24, 9142–9158. [Google Scholar] [CrossRef] [PubMed]
- Arslan, B.; Djamgoz, M.B.A.; Akün, E. ARSENIC: A review on exposure pathways, accumulation, mobility and transmission into the human food chain. Rev. Environ. Contam. Toxicol. 2017, 243, 27–51. [Google Scholar] [PubMed]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Alam, M.O.; Bhattacharya, T.; Singh, Y.N. Arsenic accumulation in food crops: A potential threat in Bengal Delta Plain. Water Qual. Expo. Heal. 2014, 6, 233–246. [Google Scholar] [CrossRef]
- Brammer, H. Mitigation of arsenic contamination in irrigated paddy soils in South and South-East Asia. Environ. Int. 2009, 35, 856–863. [Google Scholar] [CrossRef]
- Polizzotto, M.L.; Birgand, F.; Badruzzaman, A.B.M.; Ali, M.A. Amending irrigation channels with jute-mesh structures to decrease arsenic loading to rice fields in Bangladesh. Ecol. Eng. 2015, 74, 101–106. [Google Scholar] [CrossRef]
- Winkel, L.H.E.; Johnson, C.A.; Lenz, M.; Grundl, T.; Leupin, O.X.; Amini, M.; Charlet, L. Environmental selenium research: From microscopic processes to global understanding. Environ. Sci. Technol. 2012, 46, 571–579. [Google Scholar] [CrossRef] [PubMed]
- USGS. Geochemical and Mineralogical Data for Soils of the Conterminous United States; USGS: Reston, VA, USA, 2014.
- Wang, J.; Zhou, C.; Xiao, X.; Xie, Y.; Zhu, L.; Ma, Z. Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Appl. Sci. 2017, 7, 85. [Google Scholar] [CrossRef]
- Mitchell, N.; Pérez-Sánchez, D.; Thorne, M.C. A review of the behaviour of U-238 series radionuclides in soils and plants. J. Radiol. Prot. 2013, 33, R17–R48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soudek, P.; Petrova, T.; Benesova, D.; Dvorakova, M.; Vanek, T. Uranium uptake by hydroponically cultivated crop plants. J. Environ. Radioact. 2011, 102, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Boghi, A.; Roose, T.; Kirk, G.J.D. A model of uranium uptake by plant roots allowing for root-induced changes in the soil. Environ. Sci. Technol. 2018, 52, 3536–3545. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.C.; Fresquez, P.R.; Whicker, W.F. Uranium Uptake Study, Nambe, New Mexico: Source Document; Los Alamos National Laboratory: Los Alamos, NM, USA, 2000. [Google Scholar]
- Neves, O.; Abreu, M.M. Are uranium-contaminated soil and irrigation water a risk for human vegetables consumers? A study case with Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L. Ecotoxicology 2009, 18, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.O.; Abreu, M.M.; Figueiredo, V. Uranium in vegetable foodstuffs: Should residents near the Cunha Baixa uranium mine site (Central Northern Portugal) be concerned? Environ. Geochem. Health 2012, 34, 181–189. [Google Scholar] [CrossRef]
- Gomes, M.A.d.C.; Hauser-Davis, R.A.; Suzuki, M.S.; Vitória, A.P. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol. Environ. Saf. 2017, 140, 55–64. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, X. Cadmium absorption and transportation pathways in plants. Int. J. Phytoremediation 2017, 19, 133–141. [Google Scholar] [CrossRef]
- Amrhein, C.; Mosher, P.A.; Brown, A.D. The effects of redox on Mo, U, B, V, and As solubility in evaporation pond soils. Soil Sci. 1993, 155, 249–255. [Google Scholar] [CrossRef]
- Metals-U.S. Food & Drug Administration. Available online: https://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/default.htm (accessed on 18 February 2019).
- Lapworth, D.J.; Stolpe, B.; Williams, P.J.; Gooddy, D.C.; Lead, J.R. Characterization of suboxic groundwater colloids using a multi-method approach. Environ. Sci. Technol. 2013, 47, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Praetorius, A.; Scheringer, M.; Hungerbühler, K. Development of environmental fate models for engineered nanoparticles—A case study of TiO2 nanoparticles in the Rhine River. Environ. Sci. Technol. 2012, 46, 6705–6713. [Google Scholar] [CrossRef] [PubMed]
- González-Gálvez, D.; Janer, G.; Vilar, G.; Vílchez, A.; Vázquez-Campos, S. The Life Cycle of Engineered Nanoparticles; Springer: Cham, Switzerland, 2017; pp. 41–69. [Google Scholar]
- Thomé, A.; Reddy, K.R.; Reginatto, C.; Cecchin, I. Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut. 2015, 226, 121. [Google Scholar] [CrossRef]
- Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 2015, 8, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troester, M.; Brauch, H.-J.; Hofmann, T. Vulnerability of drinking water supplies to engineered nanoparticles. Water Res. 2016, 96, 255–279. [Google Scholar] [CrossRef] [PubMed]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 2019, 53, 1748–1765. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Ganguly, P.; Breen, A.; Pillai, S.C. Toxicity of nanomaterials: Exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 2018, 4, 2237–2275. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Technical Fact Sheet—Nanomaterials; USEPA: Washington, DC, USA, 2017. Available online: https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_emergingcontaminant_nanomaterials_jan2014_final.pdf (accessed on 2 February 2019).
- Inshakova, E.; Inshakov, O. World market for nanomaterials: Structure and trends. MATEC Web Conf. 2017. [Google Scholar] [CrossRef]
- Hyung, H.; Kim, J.-H. Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res. 2009, 43, 2463–2470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J.C. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204–2212. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, J.; Blomberg, E.; Odnevall Wallinder, I. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: A critical review. Environ. Sci. Technol. 2019, 53, 4030–4044. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216–9222. [Google Scholar] [CrossRef] [PubMed]
- Blaser, S.A.; Scheringer, M.; MacLeod, M.; Hungerbühler, K. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008, 390, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Surampalli, R.Y. Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef] [PubMed]
- Baalousha, M.; Yang, Y.; Vance, M.E.; Colman, B.P.; McNeal, S.; Xu, J.; Blaszczak, J.; Steele, M.; Bernhardt, E.; Hochella, M.F. Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study. Sci. Total Environ. 2016, 557–558, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Min Park, C.; Hoon Chu, K.; Her, N.; Jang, M.; Baalousha, M.; Heo, J.; Yoon, Y. Occurrence and removal of engineered nanoparticles in drinking water treatment and wastewater treatment processes. Sep. Purif. Rev. 2017, 46, 255–272. [Google Scholar] [CrossRef]
- Kaphle, A.; Navya, P.N.; Umapathi, A.; Daima, H.K. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation. Environ. Chem. Lett. 2018, 16, 43–58. [Google Scholar] [CrossRef]
- Pourzahedi, L.; Pandorf, M.; Ravikumar, D.; Zimmerman, J.B.; Seager, T.P.; Theis, T.L.; Westerhoff, P.; Gilbertson, L.M.; Lowry, G.V. Life cycle considerations of nano-enabled agrochemicals: Are today’s tools up to the task? Environ. Sci. Nano 2018, 5, 1057–1069. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Zapata, L.; Chalbi, N.; Carvajal, M. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J. Nanobiotechnol. 2016, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qiu, J.; Liu, Y.; Jiang, R.; Cai, S.; Liu, Y.; Zhu, F.; Zeng, F.; Luan, T.; Ouyang, G. Carbon nanotubes act as contaminant carriers and translocate within plants. Sci. Rep. 2015, 5, 15682. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, M.; Seneviratne, M.; Ahmad, M.; Sarkar, B.; Ok, Y.S. Contrasting effects of engineered carbon nanotubes on plants: A review. Environ. Geochem. Health 2017, 39, 1421–1439. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Christie, P.; Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci. Nano 2019, 6, 41–59. [Google Scholar] [CrossRef]
- Larue, C.; Khodja, H.; Herlin-Boime, N.; Brisset, F.; Flank, A.M.; Fayard, B.; Chaillou, S.; Carrière, M. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J. Phys. Conf. Ser. 2011, 304, 012057. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res. Lett. 2017, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef]
- Zhu, H.; Han, J.; Xiao, J.Q.; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008, 10, 713–717. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Tripathi, A.; Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; et al. Uptake, Accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017, 8, 7. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Bindraban, P.S. Nanofertilizers: New products for the industry? J. Agric. Food Chem. 2018, 66, 6462–6473. [Google Scholar] [CrossRef]
- Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T.; et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 2016, 7, 815. [Google Scholar] [CrossRef] [PubMed]
- Motyka, O.; Štrbová, K.; Olšovská, E.; Seidlerová, J. Influence of Nano-ZnO Exposure to Plants on L-Ascorbic Acid Levels: Indication of Nanoparticle-Induced Oxidative Stress. J. Nanosci. Nanotechnol. 2019, 19, 3019–3023. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Williams, P.C.; Goodson, B.M.; Geisler-Lee, J.; Fakharifar, M.; Gemeinhardt, M.E. TiO2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. Environ. Res. 2019, 172, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Cao, J. Occurrence and significance of natural ore-related Ag nanoparticles in groundwater systems. Chem. Geol. 2019, 515, 9–21. [Google Scholar] [CrossRef]
- Céspedes, C.; Yeo, M.-K. Life cycle assessment of a celery paddy macrocosm exposed to manufactured Nano-TiO2. Toxicol. Environ. Health Sci. 2018, 10, 288–296. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Z.; Hicks, A.L. Life cycle impact of titanium dioxide nanoparticle synthesis through physical, chemical, and biological routes. Environ. Sci. Technol. 2019, 53, 4078–4087. [Google Scholar] [CrossRef] [PubMed]
- Solanki, P.; Bhargava, A.; Chhipa, H.; Jain, N.; Panwar, J. Nano-fertilizers and their smart delivery system. In Nanotechnologies in Food and Agriculture; Springer International Publishing: Cham, Switzerland, 2015; pp. 81–101. [Google Scholar]
- Rai, M.; Ribeiro, C.; Mattoso, L.; Duran, N. Nanotechnologies in food and agriculture. Nanotechnol. Food Agric. 2015, 1–347. [Google Scholar] [CrossRef]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef]
- White, J.C.; Gardea-Torresdey, J. Achieving food security through the very small. Nat. Nanotechnol. 2018, 13, 627–629. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a changing world. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- RamyaPriya, R.; Elango, L. Evaluation of geogenic and anthropogenic impacts on spatio-temporal variation in quality of surface water and groundwater along Cauvery River, India. Environ. Earth Sci. 2018, 77, 1–17. [Google Scholar] [CrossRef]
- Etheridge, A.B.; MacCoy, D.E.; Weakland, R.J. Water-Quality and Biological Conditions in Selected Tributaries of the Lower Boise River, Southwestern Idaho, Water Years 2009—12 Scientific Investigations Report 2014—5132; U.S. Geological Survey: Reston, VA, USA, 2014; pp. 1–70.
- Use of Reclaimed Water and Sludge in Food Crop Production; National Academies Press: Washington, DC, USA, 1996; ISBN 978-0-309-05479-9.
- Crook, J.; Surampalli, R.Y. Water reclamation and reuse criteria in the U.S. Water Sci. Technol. 1996, 33, 451–462. [Google Scholar] [CrossRef]
- Bortolini, L.; Maucieri, C.; Borin, M. A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy 2018, 8, 23. [Google Scholar] [CrossRef]
Trace Element | EPA Drinking Water Guideline (μg L−1) [173] | Regulatory Limits for Wastewater (μg L−1) [156,174,175] | Freshwater CCC, CMC Limits for Aquatic Life (μg L−1) [176] | Recommended Maximum Concentrations of Trace Elements in Irrigation Waters (μg L−1) [157] | Reported Ranges for Trace Elements in Glacier Aquifer System of USA (Includes Wells Used for Agriculture) (μg L−1) [177] | Reported Ranges of Water Known to Impact Food and Soil Quality * (μg L−1) |
---|---|---|---|---|---|---|
Arsenic | 10 | 100 | 340, 150 | 100 | 0.09–340 | 58.7 [158], 0.2–164 [159] |
Boron | NA | NA | NA | 1000 | NA | 3351–16,000 [165,166,167] |
Cadmium | 5 | 10 | 1.8, 0.72 | 10 | 0.018–1 | <1–3200 [168] |
Cobalt | NA | 50 | NA | 50 | 0.007–95 | 0.21–0.81 [169] |
Copper | 1300 (AL) | 200 | NA | 200 | 0.126–127 | 10–133 ** [170] |
Chromium (III) or (VI) | 100 (Cr) | 100 (Cr) | 570, 74 (III) 16, 11 (VI) | 100 (Cr) | 0.4–22 (Cr) | 1–46 (VI) [171] ≤250 *** [172] |
Iron | 300 (SDWR) | 5000 | NA, 1000 | 5000 | 3–38,100 | - |
Lead | 15 (AL) | 5000 | 65, 2.5 | 5000 | 0.04–9.0 | ≤140 [160] |
Lithium | NA | 2500 | NA | 2500 | 0.040–126 | - |
Manganese | 500 (SDWR) | 200 | NA | 200 | 0.056–28,200 | ≤100 [160] |
Nickel | - | 200 | 470, 52 | 200 | 0.035–56 | ≤50 [160] |
Selenium | 50 | 20 | NA | 20 | 0.173–223 | 0.12–341 [161] |
Silver | 100 (SDWR) | NA | 3.2, NA | NA | NA | - |
Uranium | 30 | NA | NA | NA | 0.009–162 | 1–1200 [162] |
Zinc | 5000 (SDWR) | 2000 | 120, 120 | 2000 | 0.536–1000 | ~130 [168] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malakar, A.; Snow, D.D.; Ray, C. Irrigation Water Quality—A Contemporary Perspective. Water 2019, 11, 1482. https://doi.org/10.3390/w11071482
Malakar A, Snow DD, Ray C. Irrigation Water Quality—A Contemporary Perspective. Water. 2019; 11(7):1482. https://doi.org/10.3390/w11071482
Chicago/Turabian StyleMalakar, Arindam, Daniel D. Snow, and Chittaranjan Ray. 2019. "Irrigation Water Quality—A Contemporary Perspective" Water 11, no. 7: 1482. https://doi.org/10.3390/w11071482
APA StyleMalakar, A., Snow, D. D., & Ray, C. (2019). Irrigation Water Quality—A Contemporary Perspective. Water, 11(7), 1482. https://doi.org/10.3390/w11071482