Changes in Nutrient Concentrations of Two Streams in Western Lithuania with Focus on Shrinkage of Agriculture and Effect of Climate, Drainage Runoff and Soil Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Collection
2.3. Model Approach
2.4. Statistical Data Analysis
3. Results
3.1. Changes in Concentration of Nutrients in Two Streams
3.2. Climatic Conditions
3.3. Measured Drainage Runoff and Leaching of N and P
3.4. Simulated by SWAT Model Drainage Runoff
3.5. Shrinkage of Agriculture
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jager, N.W.; Challies, E.; Kochskämper, E.; Newig, J.; Benson, D.; Blackstock, K.; Von Korff, Y. Transforming European Water Governance? Participation and River Basin Management under the EU Water Framework Directive in 13 Member States. Water 2016, 8, 156. [Google Scholar] [CrossRef]
- Hoorman, J.; Hone, T.; Sudman, T., Jr.; Dirksen, T.; Iles, J.; Islam, K.R. Agricultural impacts on Lake and stream water quality in Grand Lake St. Marys, Western Ohio. Water Air Soil Pollut. 2008, 193, 309–322. [Google Scholar] [CrossRef]
- Povilaitis, A. Phosphorus trends in Lithuanian rivers affected by agricultural non-point pollution. Environ. Res. Eng. Manag. 2004, 4, 17–27. [Google Scholar]
- Povilaitis, A.; Lamsodis, R.; Bastienė, N.; Rudzianskaitė, A. Agricultural drainage in Lithuania: A review of practices and environmental effects. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 14–29. [Google Scholar] [CrossRef]
- Helsinki Commission. Approaches and methods for eutrophication target setting in the Baltic Sea region. In Baltic Sea Environment Proceedings; Helsinki Commission Press: Helsinki, Finland, 2013; Volume 133. [Google Scholar]
- Helsinki Commission. Eutrophication in the Baltic Sea—An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region: Executive summary. In Baltic Sea Environment Proceedings; Helsinki Commission Press: Helsinki, Finland, 2009; Volume 115. [Google Scholar]
- Iital, A.; Pachel, K.; Deelstra, J. Monitoring of diffuse pollution from agriculture to support implementation of the WFD and the Nitrate Directive in Estonia. Environ. Sci. Policy 2008, 11, 185–193. [Google Scholar] [CrossRef]
- Jansons, V.; Busmanis, P.; Dzalbe, I.; Kirsteina, D. Catchment and drainage field Nitrogen balances and nitrogen loss in three agriculturally influenced Latvian watersheds. Eur. J. Agric. 2003, 20, 173–179. [Google Scholar] [CrossRef]
- Lagzdins, A.; Jansons, V.; Sudars, R.; Abramenko, K. Scale issues for assessment of nutrient loss from agricultural land in Latvia. Hydrol. Res. 2012, 43, 383–399. [Google Scholar] [CrossRef]
- Povilaitis, A.; Šileika, A.S.; Deelstra, J.; Gaigalis, K.; Baigys, G. Nitrogen losses from Small agricultural catchments in Lithuania. Agric. Ecosyst. Environ. 2014, 198, 54–64. [Google Scholar] [CrossRef]
- Pengerud, A.; Stålnacke, P.; Bechmann, M.; Blicher-Mathiesen, G.; Iital, A.; Koskiaho, J.; Povilaitis, A. Temporal trends in phosphorus concentrations and losses from agricultural catchments in the Nordic and Baltic countries. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65 (Suppl. 2), 173–185. [Google Scholar] [CrossRef]
- Pionke, H.B.; Gburek, W.J.; Sharpley, A.N. Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin. Ecol. Eng. 2000, 14, 325–335. [Google Scholar] [CrossRef]
- Vagstad, N.; Jansons, V.; Loigu, E.; Deelstra, J. Nutrient losses from agricultural areas in the Gulf of Riga drainage basin. Ecol. Eng. 2000, 14, 435–441. [Google Scholar] [CrossRef]
- Vuorenmaa, S.; Rekolainen, S.; Lepistö, A.; Kenttamies, K.; Kauppila, P. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980 and 1990. Environ. Monit. Assess. 2002, 76, 213–248. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.A.; Downing, J.A. Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region. Water Air Soil Pollut. 2006, 176, 351–374. [Google Scholar] [CrossRef]
- Ulevičius, V.; Byčenkienė, S.; Senuta, K. Critical loads of sulphur and nitrogen for terrestrial ecosystems in Lithuania. Lith. J. Phys. 2009, 49, 21–28. [Google Scholar] [CrossRef]
- Gustafson, A. Simulation of nitrate leaching from arable land in Southern Sweden. Acta Agric. Scand. 1988, 38, 13–23. [Google Scholar] [CrossRef]
- Bergstrőm, L.; Jarvis, N.J. Prediction of nitrate leaching losses from arable land under different fertilization intensities using the SOIL-SOILN models. Soil Use Manag. 1991, 7, 79–85. [Google Scholar] [CrossRef]
- Povilaitis, A.; Rudzianskaitė, A.; Misevičienė, S.; Gasiūnas, V.; Miseckaitė, O.; Živatkauskienė, I. Efficiency of drainage practices for improving water quality in Lithuania. Trans. ASABE ST Joseph: Am. Soc. Agric. Biol. Eng. 2018, 61, 179–196. [Google Scholar] [CrossRef]
- Švedas, A.; Šleinys, R.; Ežerinskas, V. Plant nutrient leaching. In Soils of Lithuania; Eidukevičienė, M., Vasiliauskienė, V., Eds.; Lietuvos mokslas: Vilnius, Lithuania, 2011; pp. 750–762. [Google Scholar]
- Rudzianskaite, A.; Miseviciene, S. Nitrate nitrogen leaching in different agroecosystems (in karst zone and Middle Lithuania). J. Water Land Dev. 2005, 9, 123–133. [Google Scholar]
- Meilutytė-Barauskienė, D.; Kovalenkovienė, M.; Irbinskas, V. Water resources of Lithuania rivers and their relation to climate change. Geografija 2008, 44, 1–8. [Google Scholar]
- European Environmental Agency & Copernicus Land Monitoring Services. Validation of CORINE Land Cover Products–Summary of Preliminary Results. 2015. EEA/MDI/14/010. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view (accessed on 15 May 2018).
- QGIS Development Team. QGIS Geographic Information System, Open Source Geospatial Foundation. 2009. Available online: http://qgis.org (accessed on 6 June 2018).
- Näslund, C.; Langas, V.; Kinga Skuza, K. Water Management in Lithuania, Poland and Sweden—Comparisons of the EU Water Framework Directive in Practice; Report No 8; Web-based publication by Blekinge County Authority: Karlskrona, Sweden, 2012; ISSN 1651-8527. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Boden, II Chemische Extractionsmethoden zur Phospor-und Kaliumbestimmung. Ann. R. Agric. Coll. 1960, 26, 199–215. [Google Scholar]
- Results of the Census of Agriculture 2003 in Lithuania; Department of Statistics to the Government of the Republic of Lithuania: Vilnius, Lithuania, 2005. Available online: https://osp.stat.gov.lt/documents/10180/204989/2003_ZUS_rezultatai.pdf/c895b871-20f9-435a-8b04-651d9fac1504 (accessed on 4 April 2018).
- Results of the Agricultural Census of the Republic of Lithuania 2010; Department of Statistics to the Government of the Republic of Lithuania: Vilnius, Lithuania, 2012. Available online: https://osp.stat.gov.lt/documents/10180/204989/2010_ZUS_rezultatai.pdf/47181188-ad5c-4c7c-9b4f-2cd542714007 (accessed on 4 April 2018).
- European Environmental Agency. CORINE Land Cover; European Environmental Agency: Luxembourg, 2000; Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2000/view (accessed on 11 May 2018).
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT—Soil and Water Assessment Tool; Input/Output Documentation Version; Texas Water Resources Institute TR-439: College Station, TX, USA, 2012. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT—Soil and Water Assessment Tool. In U.S. Department of Agriculture, Agricultural Research Service; Documentation Version 2009, Technical report No. 406; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- PAIC. Renewal of SWAT Modelling System; Report No. 141278; SIA “Procesu analīzes un izpētes centrs”: Rīga, Latvia; Vilnius, Lithuania, 2014; 146p. [Google Scholar]
- Aplinkos Apsaugos Agentūra. Nemuno, Lielupės, Ventos ir Dauguvos Upių Baseinų Rajonų Valdymo Planų, Priemonių Programų ir kitų Reikiamų Dokumentų Vandensaugos Tikslams Nustatyti Parengimas ir Atnaujinimas; Protection Report No.4; Environment Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and groundwater recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.; Van Liew, M.W.; Bingner, R.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- PAIC. SWAT Calibration, Part 3; Report No. 141278; SIA “Procesu analīzes un izpētes centrs”: Rīga, Latvia; Vilnius, Lithuania, 2014; 168p. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. The Analysis of Ecological Data; Springer Science & Business Media LLC: New York, NY, USA, 2007; 672p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 11 January 2019).
- Bukantis, A.; Rimkus, E. Climate variability and change in Lithuania. Acta Zool. Litu. 2005, 15, 100–104. [Google Scholar] [CrossRef]
- Gužys, S. The Analysis of Connection between Crop Yield and Cropping Systems as well as Soil and Water Properties; Summary of Doctoral Dissertation: Akademija, Lithuania, 1999. [Google Scholar]
- Kilkus, K.; Štaras, A.; Rimkus, E.; Valiuškevičius, G. Changes in Water Balance Structure of Lithuanian Rivers under Different Climate Change Scenarios. Environ. Res. Eng. Manag. 2006, 2, 3–10. [Google Scholar]
- Results of the Farmers’ Survey from the Expeditions in the Eketė Sub-Catchment and the Akmena-Danė Catchment in 1999–2001 and 2014; Klaipėda University, Department of Social geography: Klaipėda, Lithuania, 2015.
- Ulén, B.; Fölstrer, J. Recent trends in nutrient concentrations in Swedish agricultural rivers. Sci. Total Environ. 2007, 373, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Andersson, I.; Petersson, M.; Jarsjö, J. Impact of the European Water Framework Directive on local-level water management: Case study Oxunda catchment, Sweden. Land Use Policy 2012, 29, 73–82. [Google Scholar] [CrossRef]
- Stålnacke, P.; Grimvall, A.; Libiseller, C.; Laznik, M.; Kokorite, I. Trends in nutrient concentration in Latvian rivers and response to the dramatic change in agriculture. J. Hydrol. 2003, 283, 184–205. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Čarnogurská, M.; Šlezingr, M.; Słyś, D.; Purcz, P. A model based on dimensional analysis for prediction of nitrogen and phosphorus concentrations at the river station Ižkovce, Slovakia. Hydrol. Earth Syst. Sci. 2013, 17, 201–209. [Google Scholar] [CrossRef]
- Bendíková, M.; Švecová, A. Sources of Pollution in Watersheds and Environmental Risks. Zeszyty naukowe: Budownictvo i inžyniera šrodowiska 2004, 2, 41–46. [Google Scholar]
- Povilaitis, A. Impact of agriculture decline on nitrogen and phosphorus loads in Lithuanian rivers. Ekologija 2006, 1, 32–39. [Google Scholar]
- Šileika, A.S.; Gaigalis, K.; Kutra, G.; Šmitienė, A. Factors affecting N and P losses from small catchments (Lithuania). Environ. Monit. Assess. 2005, 102, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Deelstra, J.; Iital, A.; Povilaitis, A.; Kyllmar, K.; Greipsland, I.; Blicher-Mathiesen, G.; Lagzdins, A. Hydrological pathways and nitrogen runoff in agricultural dominated catchments in Nordic and Baltic countries. Agric. Ecosyst. Environ. 2014, 195, 211–219. [Google Scholar] [CrossRef]
- Deelstra, J.; Kverno, S.H.; Granlund, K.; Šileika, A.S.; Gaigalis, K.; Kyllmar, K.; Vagstad, N. Runoff and nutrient losses during winter periods in cold climates—requirements to nutrient simulation models. J. Environ. Monit. 2009, 11, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Šleinys, R.; Rimšelis, J. Cheminių medžiagų migracija įvairiuose daugiametėmis žolėmis užimtuose dirvožemiuose. Žemdirbystė Moksl. Darb. 1998, 61, 14–25. [Google Scholar]
- Djodjic, F.; Börling, K.; Bergström, L. Phosphorus leaching in relation to soil type and soil phosphorus content. J. Environ. Qual. 2004, 33, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Stålnacke, P.; Bechmann, M. Trends in nutrient runoff from agricultural basins in Norway. Agricultural effects on ground and surface waters. Res. Sci. Soc. 2002, 273, 267–271. [Google Scholar]
- Bučienė, A.; Antanaitis, Š.; Mašauskienė, A.; Šimanskaitė, D. Nutrients N, P losses with drainage runoff and field balance as a result of crop management. Commun. Soil Sci. Plant Anal. 2007, 38, 2177–2195. [Google Scholar] [CrossRef]
- Burt, T.P.; Heathwaite, A.L.; Trudgill, S.T. Nitrate Processes, Patterns and Management; John Wiley and Sons Ltd.: Chichester, UK, 1993; 444p. [Google Scholar]
- Tunney, H.; Carton, O.T.; Brookes, P.C.; Johnson, A.E. Phosphorus Loss from Soil to Water; CAB International: Wallingford, UK, 1997; 467p. [Google Scholar]
- Francis, G.S.; Haynes, R.J.; Williams, P.H. Effects of the timing of ploughing-in temporary leguminous pastures and two winter cover crops on nitrogen mineralization, nitrate leaching and spring wheat growth. J. Agric. Sci. 1995, 124, 1–9. [Google Scholar] [CrossRef]
- Bučienė, A.; Gaigalis, K. Chemical composition of wet deposits and drainage runoff in the agroecosystems: A case of Middle Lithuania. Baltica 2012, 25, 153–162. [Google Scholar] [CrossRef]
- Juozapaitis, A. Nuotėkio metinio pasiskirstymo pakitimai drenažu nusausintuose upelių baseinuose. Mokslo ir technikos progresas melioracijoje. Liet. Hidrotech. Melior. Moksl. Tyrim. Inst. Darb. 1976, 10, 219–226. [Google Scholar]
- Gužys, S. Ecological estimation of cropping intensity. Ekologija 2002, 4, 39–48. [Google Scholar]
- Kvaerno, S.H. Pathways and nutrient loss in four field-scale catchments. In Agriculture and Environment—Long Term Monitoring in Norway; Bechmann, M., Deelstra, J., Eds.; Akademika Publishing: Trondheim, Norway, 2013; pp. 179–196. [Google Scholar]
- Bechmann, M. Long-term monitoring of nitrogen in surface and subsurface runoff from small agricultural dominated catchments in Norway. Agric. Ecosyst. Environ. 2014, 195, 220–232. [Google Scholar] [CrossRef]
- Bučienė, A. On the Sustainability of Different Farming Systems: Conventional, Organic and Integrated Systems. In Sustainable Agriculture; Jakobsson, C., Ed.; Baltic University Programms, Uppsala University: Uppsala, Sweden, 2012; pp. 17–26. [Google Scholar]
- Lintern, A.; Webb, J.A.; Ryu, D.; Liu, S.; Bende-Michl, U.; Waters, D.; Leahy, P.; Wilson, P.; Western, A.W. Key factors influencing differences in stream water quality across space. WIREs Water 2018, 5, e1260. [Google Scholar] [CrossRef]
- Wood, P.A. Controls of variation in suspended sediment concentration in the River Rother, West Sussex, England. Sedimentology 1977, 24, 437–445. [Google Scholar] [CrossRef]
- Guo, D.; Lintern, A.; Webb, J.A.; Ryu, D.; Liu, S.; Bende-Michl, U.; Western, A.W. Key Factors Affecting Temporal Variability in Stream Water Quality. Water Resour. Res. 2019, 55, 112–129. [Google Scholar] [CrossRef] [Green Version]
Parameter, mg L−1 | Eketė | Akmena-Danė | ||
---|---|---|---|---|
1999–2001 | 2014 | 1999–2001 | 2014 | |
P-tot | 0.093 ± 0.025 | 0.078 ± 0.043 | 0.192 ± 0.039 | 0.123 ± 0.065 |
PO4-P | 0.047 ± 0.013 | 0.022 ± 0.013 | 0.096 ± 0.020 | 0.064 ± 0.052 |
NO2-N | 0.028 ± 0.013 | 0.037 ± 0.028 | not determined | 0.052 ± 0.039 |
NO3-N | 1.913 ± 0.884 | 1.929 ± 1.882 | 1.650 ± 0.208 | 1.353 ± 0.660 |
NH4-N | 0.139 ± 0.163 | 0.010 ± 0.010 | 0.305 ± 0.031 | 0.015 ± 0.008 |
N-tot | 2.389 ± 0.993 | 2.333 ± 1.495 | 2.550 ± 0.404 | 2.511 ± 0.607 |
Albeluvisols | Luvisols | Gleysols | |||
---|---|---|---|---|---|
Org | Con | Org | Con | Con | |
NO3-N | 10.5 ± 1.42 | 12.4 ± 0.71 | 9.8 ± 2.11 | 17.5 ± 2.90 | 9.8 ± 4.55 |
PO4-P | 0.020 ± 0.009 | 0.020 ± 0.006 | 0.020 ± 0.005 | 0.016 ± 0.008 | 0.020 ± 0.004 |
Parameter | Eketė Sub-Catchment | Akmena-Danė Catchment | ||
---|---|---|---|---|
2000 | 2012 | 2000 | 2012 | |
Total area, ha | 9330 | 9330 | 59,349 | 59,349 |
Utilised agricultural land, h | 6245 | 5619 | 27,532 | 25,628 |
% | 66.9 | 60.2 | 46.4 | 43.2 |
Forested area, ha | 1263 | 1357 | 18,449 | 18,874 |
% | 13.5 | 14.5 | 31.1 | 31.8 |
Situation in 1999–2001 | Situation in 2014 | Change | ||
---|---|---|---|---|
Number of individual farms (i.f.) | 22 | 20 | 2 i.f. cancelled farming | |
Number of agricultural companies (a.c.) | 3 | 3 a.c. cancelled farming | No a.c. functioning | |
Arable land, % | In a.c. it ranged from 60 to 100% of total farmland; in i.f.—from 11 to 100% | Increased in i.f.—from 50 to 100%; | The total farmland area decreased, but % of arable land increased in the rest i.f. | |
Grown animals | Cows and pigs in all a.c. and cows in 80% of i.f. | No animals in a.c.; cows remained in 50% of i.f. | The decrease in total animal number was somewhat >75%+ | |
Mineral fertilizer rate, kg/ha | 60 (NPK) | 60 (NPK) | Remained the same | |
Organic fertilizer rate, t/ha | Ranged from 30 to 70 | 30–40 | Decreased |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bučienė, A.; Povilaitis, A.; Langas, V.; Bučas, M.; Petkuvienė, J.; Vaičiūtė, D.; Gužys, S. Changes in Nutrient Concentrations of Two Streams in Western Lithuania with Focus on Shrinkage of Agriculture and Effect of Climate, Drainage Runoff and Soil Factors. Water 2019, 11, 1590. https://doi.org/10.3390/w11081590
Bučienė A, Povilaitis A, Langas V, Bučas M, Petkuvienė J, Vaičiūtė D, Gužys S. Changes in Nutrient Concentrations of Two Streams in Western Lithuania with Focus on Shrinkage of Agriculture and Effect of Climate, Drainage Runoff and Soil Factors. Water. 2019; 11(8):1590. https://doi.org/10.3390/w11081590
Chicago/Turabian StyleBučienė, Angelija, Arvydas Povilaitis, Valdas Langas, Martynas Bučas, Jolita Petkuvienė, Diana Vaičiūtė, and Saulius Gužys. 2019. "Changes in Nutrient Concentrations of Two Streams in Western Lithuania with Focus on Shrinkage of Agriculture and Effect of Climate, Drainage Runoff and Soil Factors" Water 11, no. 8: 1590. https://doi.org/10.3390/w11081590
APA StyleBučienė, A., Povilaitis, A., Langas, V., Bučas, M., Petkuvienė, J., Vaičiūtė, D., & Gužys, S. (2019). Changes in Nutrient Concentrations of Two Streams in Western Lithuania with Focus on Shrinkage of Agriculture and Effect of Climate, Drainage Runoff and Soil Factors. Water, 11(8), 1590. https://doi.org/10.3390/w11081590