Enhancing the Ecological Value of Sea Dikes
Abstract
:1. Introduction
- to outline methods and approaches applicable to increase the ecological value of dikes,
- to show potentials, challenges and open research questions and
- to discuss the conception of ecologically valuable sea dike systems with regard to ecology, engineering and society.
2. Ecological Basics
2.1. Ecosystem Engineers
2.2. Ecosystem Services
- provisioning services (food, fiber, fuel, water, …)
- regulating services (air quality regulation, climate regulation, water regulation, …)
- supporting services (nutrient cycling, soil formation, photosynthesis, …)
- cultural services (cultural diversity, education, aesthetics, …)
2.3. Existing Frameworks for Integrating Ecosystems in Coastal Engineering
3. Sea Dike Design Aspects with Potential for Ecological Enhancement
3.1. Foreshore Vegetation and Fauna
3.2. Slope Inclination
3.3. Dike Roads
3.4. Dike Revetments
3.5. Grass and Herbaceous Dike Covers
3.5.1. Practical Relevance and Current Practice
3.5.2. Erosion Resistance Against Overflow and Wave Overtopping
3.5.3. Erosion Resistance Against Wave Impacts
3.5.4. Influence of Maintenance
3.6. Woody Vegetation on Dikes
4. Reinforcement Methods for Sea Dikes
4.1. Overview
4.2. Grass Reinforcement
4.2.1. Smart Grass Reinforcement (SGR)
4.2.2. High Performance Turf Reinforcement Mats (HPTRM)
4.2.3. Geocellular Containment Systems
4.2.4. Comparative Analysis
5. Discussion
5.1. Technical and Functional Conception of Ecologically Valuable Sea Dikes
5.2. Bringing Together Ecology, Engineering and Society
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Ref | Test Object | Material of Cover | Vegetation | Loads | Results |
---|---|---|---|---|---|
Model tests in wave flumes | |||||
[74] | sea dike model, 1:3 landward slope | 3 different clays tested | no vegetation | q up to 10 l/(sm) HS unknown |
|
[75] | sea dike model, 1:3 landward slope | clay | grass sods from Ribe, Denmark | q up to 30 l/(sm) HS = 0.75–1.0 m |
|
In-situ tests on real dikes | |||||
[76] | sea dikes in the Netherlands, several test locations | clay | various grass conditions and maintenance strategies | Dutch WOS q up to 75 l/(sm) HS = 2 m |
|
[77] | sea dikes in the Netherlands (here only Vecht dike) | 90% sand | grass cover in a good condition | Dutch WOS q up to 50 l/(sm) HS = 1 m and 3 m |
|
[78] | Vietnamese sea dikes, 1:3 & 1:15 landward slope | moderate clay | Bermuda grass | Dutch WOS q up to 70 l/(sm) HS = 1.5 m |
|
good clay | Bermuda and Vetiver grass | Dutch WOS q up to 120 l/(sm) HS = 1.5 m |
| ||
good clay | young Bermuda grass (1-year, good condition) | Dutch WOS q up to 110 l/(sm) HS = 1.5 m |
| ||
good clay | young Carpet grass (1-year, good condition) | Dutch WOS q up to 100 l/(sm) HS = 1.5 m and 2 m |
| ||
[79] | tidal river dike in Belgium, 1:1.7 landward slope | clay | grass in poor condition | Dutch WOS q up to 25 l/(sm) HS up to 1.2 m |
|
clay | grass in poor condition | Overflow simulator q up to 170 l/(sm) |
| ||
Model tests on artificial research dikes/dike covers | |||||
[81,82] | planter trays on 1:3 slope | clay | no vegetation | US WOS q up to 18.6 l/(sm) HS = 2.44 m |
|
clay | Bermuda grass | US WOS q up to 370 l/(sm) HS = 2.44 m |
| ||
clay | Bahia grass | US WOS q up to 279 l/(sm) HS = 2.44 m |
| ||
[82] | planter trays on 1:3 slope | 4 different sandy soils | Bahia grass, 50% and 30% grass coverage | US WOS HS up to 2.44 m |
|
[80] | research dike, 1:2 & 1:3 landward slope | fine-grained dredged material | standard dike seeding mixture * with added legumes **, good vegetation coverage | overflow tests max. q > 550 l/(sm) max. v > 4.6 m/s |
|
References
- Construction Industry Research and Information Association (CIRIA). The International Levee Handbook; CIRIA: London, UK, 2013; ISBN 978-0-86017-734-0. [Google Scholar]
- Schüttrumpf, H. Sea Dikes in Germany. In Die Küste; Kuratorium für Forschung im Küsteningenieurwesen, Ed.; Boyens Medien GmbH & Co. KG: Heide i. Holstein, Germany, 2008; pp. 189–199. [Google Scholar]
- Thorenz, F. Coastal Flood Defence and Coastal Protection along the North Sea Coast of Niedersachsen. In Die Küste; Kuratorium für Forschung im Küsteningenieurwesen, Ed.; Boyens Medien GmbH & Co. KG: Heide i. Holstein, Germany, 2008; pp. 158–169. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Cheong, S.-M.; Silliman, B.; Wong, P.P.; van Wesenbeeck, B.; Kim, C.-K.; Guannel, G. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 2013, 3, 787–791. [Google Scholar] [CrossRef]
- Van Loon-Steensma, J.M.; Schelfhout, H.A.; Vellinga, P. Green adaptation by innovative dike concepts along the Dutch Wadden Sea coast. Environ. Sci. Policy 2014, 44, 108–125. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Van Wesenbeeck, B.K.; van der Meulen, M.D.; Pesch, C.; de Vriend, H.; de Vries, M.B. Nature-Based Approaches in Coastal Flood Risk Management: Physical Restrictions and Engineering Challenges. In Ecosystem-Based Disaster Risk Reduction and Adaptation in Practice; Renaud, F.G., Sudmeier-Rieux, K., Estrella, M., Nehren, U., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 181–198. ISBN 978-3-319-43631-9. [Google Scholar]
- Hood, W.G. Indirect environmental effects of dikes on estuarine tidal channels: Thinking outside of the dike for habitat restoration and monitoring. Estuaries 2004, 27, 273–282. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; de Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Empfehlungen für die Ausführung von Küstenschutzwerken (EAK). Empfehlungen für Küstenschutzwerke: Korrigierte Ausgabe 2002. In Die Küste; Kuratorium für Forschung im Küsteningenieurwesen, Ed.; Bundesanstalt für Wasserbau (BAW): Karlsruhe, Germany, 2002. [Google Scholar]
- Sheaves, M. Consequences of ecological connectivity: The coastal ecosystem mosaic. Mar. Ecol. Prog. Ser. 2009, 391, 107–115. [Google Scholar] [CrossRef]
- Olds, A.D.; Connolly, R.M.; Pitt, K.A.; Pittman, S.J.; Maxwell, P.S.; Huijbers, C.M.; Moore, B.R.; Albert, S.; Rissik, D.; Babcock, R.C.; et al. Quantifying the conservation value of seascape connectivity: A global synthesis. Glob. Ecol. Biogeogr. 2016, 25, 3–15. [Google Scholar] [CrossRef]
- Scheres, B.; Schüttrumpf, H. Conception of Ecologically Valuable Sea Dike Systems. In The Thirteenth International MEDCOAST Congress on Coastal and Marine Sciences, Engineering, Management and Conservation; MEDCOAST 17; Mediterranean Coastal Foundation: Mellieha, Malta, 2017; pp. 893–904. ISBN 978-605-85652-6-5. [Google Scholar]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Positive and negative effects of organisms as ecosystem engineers. Ecology 1997, 78, 1946–1957. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology, 2nd ed.; Imprint; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9504-9. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being. Synthesis: A Report of the Millennium Ecosystems Assessment; Island Press: Washington, DC, USA, 2005; ISBN 1-59726-040-1. [Google Scholar]
- National Research Council. Valuing Ecosystem Services; National Academies Press: Washington, DC, USA, 2004; ISBN 978-0-309-09318-7. [Google Scholar]
- Arkema, K.K.; Verutes, G.M.; Wood, S.A.; Clarke-Samuels, C.; Rosado, S.; Canto, M.; Rosenthal, A.; Ruckelshaus, M.; Guannel, G.; Toft, J.; et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl. Acad. Sci. USA 2015, 112, 7390–7395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, J.L.; Jones, C.G.; Byers, J.E.; Arkema, K.K.; Berkenbusch, K.; Commito, J.A.; Duarte, C.M.; Hacker, S.D.; Lambrinos, J.G.; Hendriks, I.E.; et al. Physical ecosystem engineers and the functioning of estuaries and coasts. In Treatise on Estuarine and Coastal Science; Elsevier: Amsterdam, The Netherlands, 2011; pp. 53–81. ISBN 9780080878850. [Google Scholar]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.-M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [PubMed]
- Van Wesenbeeck, B.K.; de Boer, W.; Narayan, S.; van der Star, W.R.L.; de Vries, M.B. Coastal and riverine ecosystems as adaptive flood defenses under a changing climate. Mitig. Adapt. Strateg. Glob. Chang. 2016, 22, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- De Vriend, H.J. Building with Nature: Mainstreaming the Concept. In Proceedings of the 11th International Conference on Hydroscience & Engineering (ICHE 2014), Hamburg, Germany, 28 September–2 October 2014; Lehfeldt, R., Kopmann, R., Eds.; pp. 29–36, ISBN 978-3-939230-32-8. [Google Scholar]
- De Vriend, H.; van Koningsveld, M.; Aarninkhof, S. ‘Building with nature’: The new Dutch approach to coastal and river works. Proc. Inst. Civ. Eng. Civ. Eng. 2014, 167, 18–24. [Google Scholar] [CrossRef]
- Bridges, T.; Bourne, E.M.; King, J.; Kuzmitski, H.; Moynihan, E.; Suedel, B. Engineering with Nature: An Atlas; U.S. Army Engineer Research and Development Center: Vicksburg, Mississippi, USA, 2018; ISBN 9781732590403. [Google Scholar]
- SAGE. Natural and Structural Measures for Shoreline Stabilization. Available online: http://www.sagecoast.org/docs/SAGE_LivingShorelineBrochure_Print.pdf (accessed on 2 July 2019).
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Pontee, N.; Narayan, S.; Beck, M.W.; Hosking, A.H. Nature-based solutions: Lessons from around the world. Proc. Inst. Civ. Eng. Marit. Eng. 2016, 169, 29–36. [Google Scholar] [CrossRef]
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 2019, 21, 755. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Bradley, K.; Houser, C. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. J. Geophys. Res. 2009, 114, 67. [Google Scholar] [CrossRef]
- McIvor, A.; Möller, I.; Spencer, T.; Spalding, M. Reduction of Wind and Swell Waves by Mangroves. Natural Coastal Protection Series: Report 1; Cambridge Coastal Research Unit Working Paper 40; The Nature Conservancy and Wetlands International: Cambridge, UK, 2012; Available online: https://www.conservationgateway.org/ConservationPractices/Marine/crr/library/Documents/wind-and-swell-wave-reduction-by-mangroves.pdf (accessed on 2 July 2019).
- Möller, I.; Spencer, T.; French, J.R.; Leggett, D.J.; Dixon, M. Wave transformation over salt marshes: A field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci. 1999, 49, 411–426. [Google Scholar] [CrossRef]
- Vuik, V.; Borsje, B.W.; Willemsen, P.W.J.M.; Jonkman, S.N. Salt marshes for flood risk reduction: Quantifying long-term effectiveness and life-cycle costs. Ocean Coast. Manag. 2019, 171, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Gacia, E.; Granata, T.C.; Duarte, C.M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 1999, 65, 255–268. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R.; D’Alpaos, A.; Morris, J.T.; Mudd, S.M.; Temmerman, S. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef]
- Piazza, B.P.; Banks, P.D.; La Peyre, M.K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restor. Ecol. 2005, 13, 499–506. [Google Scholar] [CrossRef]
- Kochmann, J.; Buschbaum, C.; Volkenborn, N.; Reise, K. Shift from native mussels to alien oysters: Differential effects of ecosystem engineers. J. Exp. Mar. Biol. Ecol. 2008, 364, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.; Huettel, M.; Klueter, A.; Kremb, S.G.; Rasheed, M.Y.M.; Jorgensen, B.B. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 2004, 428, 66–70. [Google Scholar] [CrossRef]
- Bouma, T.J.; van Belzen, J.; Balke, T.; Zhu, Z.; Airoldi, L.; Blight, A.J.; Davies, A.J.; Galvan, C.; Hawkins, S.J.; Hoggart, S.P.G.; et al. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take. Coast. Eng. 2014, 87, 147–157. [Google Scholar] [CrossRef]
- Spalding, M.D.; McIvor, A.L.; Beck, M.W.; Koch, E.W.; Möller, I.; Reed, D.J.; Rubinoff, P.; Spencer, T.; Tolhurst, T.J.; Wamsley, T.V.; et al. Coastal ecosystems: A critical element of risk reduction. Conserv. Lett. 2014, 7, 293–301. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Gittman, R.K.; Arkema, K.K.; Bennett, R.O.; Benoit, J.; Blitch, S.; Burks-Copes, K.A.; Colden, A.; Dausman, A.; DeAngelis, B.M.; et al. Investing in natural and nature-based infrastructure: Building better along our coasts. Sustainability 2018, 10, 523. [Google Scholar] [CrossRef]
- Dugan, J.E.; Airoldi, L.; Chapman, M.G.; Walker, S.J.; Schlacher, T. Estuarine and Coastal Structures: Environmental Effects, A Focus on Shore and Nearshore Structures. In Treatise on Estuarine and Coastal Science; Academic Press: Waltham, MA, USA, 2011; pp. 17–41. ISBN 9780080878850. [Google Scholar]
- Meyer, M.; Emersleben, A. Einsatz von Geozellen im Deich- und Wasserbau. In Sicherung von Dämmen, Deichen und Stauanlagen: Handbuch für Theorie und Praxis Vol. III; Herrmann, R.A., Jürgen, J., Eds.; Universitätsverlag Siegen: Siegen, Germany, 2009; pp. 431–443. ISBN 978-3-936533-33-0. [Google Scholar]
- Construction Industry Research and Information Association (CIRIA). The Rock Manual. The Use of Rock in Hydraulic Engineering, 2nd ed.; CIRIA: London, UK, 2007; ISBN 978-0-86017-683-1. [Google Scholar]
- Gewatech. Begrünung von Deckwerken. Available online: http://www.gewatech.de/deu/begruenung_von_deckwerken.html (accessed on 2 July 2019).
- Trentmann, J. Dichtung aus Wasserbausteinen mit Vollverguss aus hydraulisch gebundenem Vergussstoff. KW Korrespondenz Wasserwirtschaft 2011, 4, 452–458. [Google Scholar]
- Wilke, M.; Krueger, B.; Schuell, M.; Tschernutter, P. Erosion Resistant Construction of Overflow Sections by means of Geosynthetic Concrete Mattresses. In Proceedings of the 6th International Conference on Scour and Erosion (ICSE-6), Paris, France, 27–31 August 2012; Fry, J.-J., Chevalier, C., Eds.; Société Hydrotechnique de France: Paris, France, 2012; pp. 1231–1238. [Google Scholar]
- Shoretec. Shoreblock® BD Series: Concrete Revetment Block. Available online: http://www.shoretec.com/downloads/bd-brochure.pdf (accessed on 2 July 2019).
- Mohamed, T.A.; Alias, N.A.; Ghazali, A.H.; Jaafar, M.S. Evaluation of environmental and hydraulic performance of bio-composite revetment blocks. Am. J. Environ. Sci. 2006, 2, 129–134. [Google Scholar] [CrossRef]
- Coombes, M.A.; La Marca, E.C.; Naylor, L.A.; Thompson, R.C. Getting into the groove: Opportunities to enhance the ecological value of hard coastal infrastructure using fine-scale surface textures. Ecol. Eng. 2015, 77, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.E.; Herbert, R.J.H.; Britton, J.R.; Hull, S.L. Ecological enhancement techniques to improve habitat heterogeneity on coastal defence structures. Estuar. Coast. Shelf Sci. 2018, 210, 68–78. [Google Scholar] [CrossRef]
- Strain, E.M.A.; Olabarria, C.; Mayer-Pinto, M.; Cumbo, V.; Morris, R.L.; Bugnot, A.B.; Dafforn, K.A.; Heery, E.; Firth, L.B.; Brooks, P.R.; et al. Eco-engineering urban infrastructure for marine and coastal biodiversity: Which interventions have the greatest ecological benefit? J. Appl. Ecol. 2017, 55, 426–441. [Google Scholar] [CrossRef]
- Dafforn, K.A.; Glasby, T.M.; Johnston, E.L. Comparing the invasibility of experimental “reefs” with field observations of natural reefs and artificial structures. PLoS ONE 2012, 7, e38124. [Google Scholar] [CrossRef]
- Sella, I.; Perkol-Finkel, S. Blue is the new green—Ecological enhancement of concrete based coastal and marine infrastructure. Ecol. Eng. 2015, 84, 260–272. [Google Scholar] [CrossRef]
- Technical Advisory Committee for Flood Defence (TAW). Grass Cover as a Dike Revetment; TAW: Delft, The Netherlands, 1999. [Google Scholar]
- U. S. Army Corps of Engineers (USACE). Guidelines for Landscape Planting and Vegetation Management at Levees, Floodwalls, Embankment Dams, and Appurtenant Structures; Technical Letter No. ETL 1120-2-583; USACE: Washington, DC, USA, 2014. [Google Scholar]
- Gray, D.H. Influence of Vegetation on the Stability of Slopes. In Vegetation and Slopes: Stabilisation, Protection, and Ecology, Proceedings of the International Conference, Oxford, UK, 29–30 September 1994; Barker, D.H., Telford, T., Eds.; American Society of Civil Engineers [Distributor]: London, UK; New York, NY, USA, 1995; pp. 2–25. ISBN 0727720317. [Google Scholar]
- Vannoppen, W.; Vanmaercke, M.; de Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Technical Advisory Committee for Flood Defence (TAW). Erosion Resistance of Grassland as Dike Covering; Technical Report; TAW: Delft, The Netherlands, 1997. [Google Scholar]
- Hiller, H. Über das Schutzvermögen der Grasnarben auf einigen Seedeichen in Ostfriesland. Zeitschrift für Kulturtechnik und Flurbereinigung 1973, 14, 99–111. [Google Scholar]
- Hiller, H. Der biotechnische Wert von standortgemäßen Grasnarben auf Flußdeichen—Ansaatmischungen, Anlage und Pflege. In Ingenieurbiologie—Flußdeiche und Flußdämme, Bewuchs und Standsicherheit; Pflug, W., Hacker, E., Eds.; Selbstverlag der Gesellschaft für Ingenieurbiologie: Aachen, Germany, 1999; pp. 119–152. ISBN 3-9802634-4-4. [Google Scholar]
- Jittler, M. Struktur- und Standortanalysen der Vegetation von Landesschutzdeichen im Elbeästuar; Eine Analyse vor dem Hintergrund der Deichsicherheit; Kovač: Hamburg, Germany, 2001; ISBN 978-3-8300-0416-5. [Google Scholar]
- Pohl, C.; Richwien, W. Die Bemessung der Außenböschung von Seedeichen unter Ansatz des festigkeitssteigernden Einflusses der Grasnarbe In Sicherung von Dämmen, Deichen und Stauanlagen: Handbuch für Theorie und Praxis Vol. II; Herrmann, R.A., Jensen, J., Eds.; Universitätsverlag Siegen: Siegen, Germany, 2006; pp. 55–76. [Google Scholar]
- Pilarczyk, K.W. Dikes and Revetments. Design, Maintenance and Safety Assessment; Routledge: London, UK, 2017; ISBN 1351454935. [Google Scholar]
- Truong, P.; Gordon, I.; Armstrong, F. Vetiver Grass for Saline Land Rehabilitation under Tropical and Mediterranean Climate. In PUR$L: Wake Up Australia! Saltland Opportunities: Profit for Our Communities and the Environment, Proceedings of the 8th National Conference and Workshop on the Productive Use and Rehabilitation of Saline Lands, Albany, Australia, 16–20 September 2002; Promaco Conventions: Perth, Australia, 2002; ISBN 9781863081016. [Google Scholar]
- Islam, M.S.; Shahriar, B.A.M.; Parshi, F.N. Bio-Technical Solution for Dyke Protection in Saline Zone of Bangladesh. In Proceedings of the 2014 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM14), Busan, Korea, 24–28 August 2014. [Google Scholar]
- Möller, J.; Weissmann, R.; Schüttrumpf, H.; Kudella, M.; Oumeraci, H.; Richwien, W.; Grüne, J. Interaction of Wave Overtopping and Clay Properties for Seadikes. In Proceedings of the 28th International Conference on Coastal Engineering (ICCE 2002), Cardiff, UK, 7–12 July 2002. [Google Scholar]
- Piontkowitz, T. EroGRASS: Failure of Grass Cover Layers at Seaward and Shoreward Dike Slopes. Performance, Results and Conclusions. 2012. Available online: http://www.masterpiece.dk/UploadetFiles/10852/36/EroGrassreportB.pdf (accessed on 2 August 2019).
- Van der Meer, J.; Schrijver, R.; Hardeman, B.; van Hoven, A.; Verheij, H.; Steendam, G.J. Guidance on Erosion Resistance of Inner Slopes of Dikes from Three Years of Testing with the Wave Overtopping Simulator. In Coasts, Marine Structures and Breakwaters: Adapting to Change; Allsop, W., Ed.; Thomas Telford Ltd.: London, UK, 2010; pp. 460–473. ISBN 0-7277-4159-4. [Google Scholar]
- Steendam, G.J.; van der Meer, J.W.; Hardeman, B.; van Hoven, A. Destructive wave overtopping tests on grass covered landward slopes of dikes and transitions to berms. Coast. Eng. Proc. 2010, 11, 8. [Google Scholar] [CrossRef]
- Trung, L.H. Overtopping on Grass Covered Dikes: Resistance and Failure of the Inner Slopes. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2014. [Google Scholar]
- Van Damme, M.; Ponsioen, L.; Herrero, M.; Peeters, P.; Lang, M.; Klijn, F.; Samuels, P. Comparing Overflow and Wave-Overtopping Induced Breach Initiation Mechanisms in an Embankment Breach Experiment. In Proceedings of the FLOODrisk 2016—3rd European Conference on Flood Risk Management, Lyon, France, 17–21 October 2016. [Google Scholar] [CrossRef]
- Cantré, S.; Olschewski, J.; Saathoff, F. Full-scale flume experiments to analyze the surface erosion resistance of dike embankments made of dredged materials. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017001. [Google Scholar] [CrossRef]
- Thornton, C.; Hughes, S.; Scholl, B. Full-Scale Testing of Levee Resiliency During Wave Overtopping. In Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012; pp. 1215–1222. [Google Scholar]
- Thornton, C.; Hughes, S.; Scholl, B.; Youngblood, N. Estimating grass slope resiliency during wave overtopping: Results from full-scale overtopping simulator testing. Int. Conf. Coast. Eng. 2014, 1, 52. [Google Scholar] [CrossRef]
- Van der Meer, J.W.; Allsop, N.W.H.; Bruce, T.; de Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. EurOtop: Manual on Wave Overtopping of Sea Defences and Related Structures: An Overtopping Manual Largely Based on European Research, But for Worldwide Application. 2018. Available online: www.overtopping-manual.com (accessed on 2 August 2019).
- Van Steeg, P.; Klein Breteler, M.; Labrujere, A. Use of wave impact generator and wave flume to determine strength of outer slopes of grass dikes under wave loads. Coast. Eng. Proc. 2015, 1, 60. [Google Scholar] [CrossRef]
- Führböter, A. Der Druckschlag durch Brecher auf Deichböschungen. In Mitteilungen des Franzius-Instituts für Grund- und Wasserbau der Technischen Universität Hannover; Franzius-Institut der TU Hannover: Hannover, Germany, 1966. [Google Scholar]
- Sprangers, H. Vegetation Dynamics and Erosion Resistance of Sea Dyke Grassland. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1999. [Google Scholar]
- Berendse, F.; van Ruijven, J.; Jongejans, E.; Keesstra, S. Loss of plant species diversity reduces soil erosion resistance. Ecosystems 2015, 18, 881–888. [Google Scholar] [CrossRef]
- Haselsteiner, R. Der Bewuchs an und auf Hochwasserschutzdeichen an Fließgewässern aus technischer und naturschutzfachlicher Sicht. In Wasserbau und Umwelt – Anforderungen, Methoden, Lösungen. Dresdner Wasserbauliche Mitteilungen 40; Technische Universität Dresden, Institut für Wasserbau und technische Hydromechanik: Dresden, Germany, 2010; pp. 373–382. [Google Scholar]
- Zanetti, C.; Macia, J.; Liency, N.; Vennetier, M.; Mériaux, P.; Provansal, M.; Lang, M.; Klijn, F.; Samuels, P. Roles of the riparian vegetation: The antagonism between flooding risk and the protection of environments. E3S Web Conf. 2016, 7, 13015. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung e.V. Hochwasserschutzanlagen an Fließgewässern; DIN 19712/2013; DIN Deutsches Institut für Normung e.V.: Berlin, Germany, 2013. [Google Scholar]
- Haselsteiner, R. Woody Vegetation on Small Embankments. In Proceedings of the 8th ICOLD European Club Symposium: Dam Safety—Sustainability in a Changing Environment, Innsbruck, Austria, 22–23 September 2010. [Google Scholar]
- Haselsteiner, R.; Strobl, T. Deichertüchtigung unter besonderer Berücksichtigung von Gehölzen. In Sicherung von Dämmen, Deichen und Stauanlagen: Handbuch für Theorie und Praxis Vol. II; Herrmann, R.A., Jensen, J., Eds.; Universitätsverlag Siegen: Siegen, Germany, 2006; pp. 325–353. [Google Scholar]
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. Deiche an Fließgewässern Teil 1: Planung, Bau und Betrieb; DWA-M 507-1; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany, 2011. [Google Scholar]
- Seethaler, L. Wurzelausbreitung von Gehölzen auf Flußdeichen. In Ingenieurbiologie—Flußdeiche und Flußdämme, Bewuchs und Standsicherheit; Pflug, W., Hacker, E., Eds.; Selbstverlag der Gesellschaft für Ingenieurbiologie: Aachen, Germany, 1999; pp. 215–232. ISBN 3-9802634-4-4. [Google Scholar]
- Pflug, W.; Stähr, E. Wald auf und an Flussdeichen. In Ingenieurbiologie—Flußdeiche und Flußdämme, Bewuchs und Standsicherheit; Pflug, W., Hacker, E., Eds.; Selbstverlag der Gesellschaft für Ingenieurbiologie: Aachen, Germany, 1999; pp. 297–321. ISBN 3-9802634-4-4. [Google Scholar]
- Zhang, J.; Nakamura, H. Effect of tree roots on soil erosion control at seadikes in the northern part of the Hang Zhou Bay, China. J. Jpn. Soc. Eros. Control Eng. 1998, 51, 5–12. [Google Scholar] [CrossRef]
- Lammeranner, W.; Haselsteiner, R. Ingenieurbiologische Bauweisen an Hochwasserschutzdeichen. In Wasserbau und Umwelt – Anforderungen, Methoden, Lösungen. Dresdner Wasserbauliche Mitteilungen 40; Technische Universität Dresden, Institut für Wasserbau und technische Hydromechanik: Dresden, Germany, 2010; pp. 191–200. [Google Scholar]
- Kisse, A.; Ellebracht, M. Bäume auf Deichen—Hochwasserschutz kontra ökologische Landschaftsplanung? In Sicherung von Dämmen, Deichen und Stauanlagen: Handbuch für Theorie und Praxis Vol. V; Herrmann, R.A., Jensen, J., Eds.; Universitätsverlag - universi: Siegen, Germany, 2015; pp. 189–201. [Google Scholar]
- Haselsteiner, R.; Mett, M.; Strobl, T. Überströmungssicherung von Deichen mit Geokunststoffen. In Proceedings of the 5. Geokunststoff-Kolloquium, Bad Lauterberg, Germany, 25–25 January 2007. [Google Scholar]
- Werth, K.; Heerten, G. Zukünftige Deichregelquerschnitte—Einfach nur höher und breiter? In Vorsorgender und Nachsorgender Hochwasserschutz; Heimerl, S., Meyer, H., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; pp. 392–401. ISBN 978-3-658-03739-0. [Google Scholar]
- Mitobe, Y.; Adityawan, M.B.; Roh, M.; Tanaka, H.; Otsushi, K.; Kurosawa, T. Experimental study on embankment reinforcement by steel sheet pile structure against tsunami overflow. Coast. Eng. J. 2016, 58, 1640018-1–1640018-18. [Google Scholar] [CrossRef]
- Lengkeek, H.J.; Bruijn, E. Soil Nailing in Clay for Dike Reinforcement. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 5–9 October 2009; pp. 1586–1589. [Google Scholar]
- Natoli, E.; Admiraal, B.; de Wit, D.; Yahyaoui, A.; de Vos, W.J. River embankment strengthening by non-metallic nails: Overview on a permanent soil nailing for flood protection. Innov. Infrastruct. Solut. 2017, 2, 344. [Google Scholar] [CrossRef]
- Heerten, G. Geosynthetische Tondichtungsbahnen als mineralisches Dichtungselement im Wasserbau und Umweltschutz. BauPortal 2014, 12, 32–41. [Google Scholar]
- Theisen, M.S. The role of geosynthetics in erosion and sediment control: An overview. Geotext. Geomembr. 1992, 11, 535–550. [Google Scholar] [CrossRef]
- Van der Meer, J.W.; Bernadini, P.; Steendam, G.J.; Akkerman, G.J.; Hoffmanns, G.J.C.M. The wave overtopping simulator in action. Coast. Struct. 2007, 2, 645–656. [Google Scholar] [CrossRef]
- Akkerman, G.J.; Bernardini, P.; van der Meer, J.; Verheij, H.; van Hoven, A. Field tests on sea defences subject to wave overtopping. Coast. Struct. 2007, 2, 657–668. [Google Scholar] [CrossRef]
- Akkerman, G.J.; van Gerven, K.A.J.; Schaap, H.A.; van der Meer, J.W. Work Package 3—Development of Alternative Overtopping-Resistant Sea Defences. Phase 3: Wave Overtopping Erosion Tests at Groningen Sea Dyke. Final Report. 2007. Available online: https://repository.tudelft.nl/islandora/object/uuid:5a9665be-ca95-4e6a-80d7-60f0a4221db8/datastream/OBJ/download (accessed on 2 July 2019).
- Propex. Pyramat®: Product Data Pyramat® 75 HPTRM. Available online: http://propexglobal.com/Portals/0/Product%20PDFs/Erosion%20Control/Product%20Data%20Sheets/PYRAMAT%2075%20PDS.pdf (accessed on 1 July 2019).
- Tensar. Specification Sheet—VMax® P550® Turf Reinforcement Mat. Available online: https://nagreen.com/sites/default/files/2017-03/EC_RMX_MPDS_VMP550_5.13.pdf (accessed on 1 July 2019).
- ASTM. ASTM D 6460-12: Standard Test Method for Determination of Rolled Erosion Control Product (RECP) Performance in Protecting Earthen Channels from Stormwater-Induced Erosion; American Society for Testing and Materials: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Pan, Y.; Li, L.; Amini, F.; Kuang, C. Full-scale HPTRM-strengthened levee testing under combined wave and surge overtopping conditions: Overtopping hydraulics, shear stress, and erosion analysis. J. Coast. Res. 2013, 286, 182–200. [Google Scholar] [CrossRef]
- Pan, Y.; Li, L.; Amini, F.; Kuang, C. Overtopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM system. Ocean Eng. 2015, 96, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Meyer, N.; Emersleben, A. Mechanisches Verhalten von bewehrten Böden mit Geozellen. In Proceedings of the 9. Informations- und Vortragstagung über “Geokunststoffe in der Geotechnik”, Munich, Germany, 16–17 February 2005; pp. 19–55. [Google Scholar]
- Wu, K.J.; Austin, D.N. Three-dimensional polyethylene geocells for erosion control and channel linings. Geotext. Geomembr. 1992, 11, 611–620. [Google Scholar] [CrossRef]
- Hewlett, H.W.M.; Boorman, L.A.; Bramley, L.A. Design of Reinforced Grass Waterways; Construction Industry Research and Information Association: London, UK, 1987; ISBN 9780860172857. [Google Scholar]
- Allen, R.J.; Webb, B.M. Determination of Wave Transmission Coefficients for Oyster Shell Bag Breakwaters. In Coastal Engineering Practice (2011); Magoon, O.T., Noble, R.M., Treadwell, D.D., Kim, Y.C., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 684–697. ISBN 9780784411902. [Google Scholar]
- Miller, J.K.; Rella, A.; Williams, A.; Sproule, E. Living Shorelines Engineering Guidelines. Prepared for: New Jersey Department of Environmental Protection; 2015. Available online: https://www.nj.gov/dep/cmp/docs/living-shorelines-engineering-guidelines-final.pdf (accessed on 2 July 2019).
- Tuya, F.; Vila, F.; Bergasa, O.; Zarranz, M.; Espino, F.; Robaina, R.R. Artificial seagrass leaves shield transplanted seagrass seedlings and increase their survivorship. Aquat. Bot. 2017, 136, 31–34. [Google Scholar] [CrossRef]
- Paul, M.; Amos, C.L. Spatial and seasonal variation in wave attenuation over Zostera noltii. J. Geophys. Res. 2011, 116, 138. [Google Scholar] [CrossRef]
- Vuik, V. Building Safety with Nature. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar]
- Scheres, B.; Graunke, A.; Wrage-Mönnig, N.; Schüttrumpf, H. Full-Scale Model Tests on the Erosion Resistance of Ecologically Valuable Sea Dike Vegetation. In Proceedings of the 9th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Tainan, Taiwan, 11–17 November 2018; pp. 329–337. [Google Scholar]
- Naylor, L.A.; Coombes, M.A.; Venn, O.; Roast, S.D.; Thompson, R.C. Facilitating ecological enhancement of coastal infrastructure: The role of policy, people and planning. Environ. Sci. Policy 2012, 22, 36–46. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- McNie, E.C. Reconciling the supply of scientific information with user demands: An analysis of the problem and review of the literature. Environ. Sci. Policy 2007, 10, 17–38. [Google Scholar] [CrossRef]
- Benda, L.E.E.E.; Poff, N.L.; Tague, C.; Palmer, M.A.; Pizzuto, J.; Cooper, S.; Stanley, E.; Moglen, G. How to avoid train wrecks when using science in environmental problem solving. BioScience 2002, 52, 1127. [Google Scholar] [CrossRef]
- Cundill, G.; Rodela, R. A review of assertions about the processes and outcomes of social learning in natural resource management. J. Environ. Manag. 2012, 113, 7–14. [Google Scholar] [CrossRef]
- Basco-Carrera, L.; Warren, A.; van Beek, E.; Jonoski, A.; Giardino, A. Collaborative modelling or participatory modelling? A framework for water resources management. Environ. Model. Softw. 2017, 91, 95–110. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Chang. Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef]
- Nobre, A.M. Scientific approaches to address challenges in coastal management. Mar. Ecol. Prog. Ser. 2011, 434, 279–289. [Google Scholar] [CrossRef] [Green Version]
Contra | Reference |
Increased risk of vegetation-induced dike damage, e.g., holes due to tree failure, damage of dike sealing | [1,89,93,94] |
Increased risk of erosion: trees as starting point for external erosion (flow concentrations, turbulences), increased internal erosion due to cavities as a result of root decay | [1,63,89,93,94] |
Additional forces, e.g., wind forces, transmitted into slope | [1,63,93] |
Hinder the development of an erosion-resistant surface cover due to shadowing | [1,93] |
Effects on water flow: reduction of flow velocities through increased roughness, reduced flow cross section | [63,89] |
Increased risk to attract burrowing animals | [1,93] |
Complication of monitoring and maintenance | [1,63,89,93] |
Obstacles during flood fighting operations | [1,63,93] |
Pro | Reference |
Increased soil stabilization due to root reinforcement | [1,63,89,95,96] |
Increased (global) dike stability due to additional weight and/or deeper roots | [63,94,95,97] |
Positive effects on soil moisture due to interception, water extraction and transpiration | [63,89,94] |
Foreshore woody vegetation and woody vegetation on the outer slope can act as breakwater or protection against ice drift and reduce flow velocities | [88,94,97] |
Positive effects on sediment transport | [89] |
Ecological functions, e.g., providing habitats, balancing water quality, temperature etc. | [89,98] |
Cultural, recreational and aesthetic functions | [89,95,98] |
Reduced maintenance costs/efforts | [95,97] |
Dike Component | Common Design | Ecological Enhancement | Limitations/Challenges |
---|---|---|---|
Foreshore | Not directly integrated in dike design | Ecosystem engineering (marshes, reefs, etc.) or nature-based solutions (e.g., artificial reefs) | Little experience concerning establishment and management. Uncertainties concerning (constant) coastal protection function |
Slope inclination | Slope design as compromise between dike stability and material consumption/footprint | Milder seaward slopes for positive effects on nature, recreation and coastal processes | Increased dike footprint, additional habitat loss/alteration |
Dike roads | Asphalt roads | Alternative vegetated fortified paths (e.g., vegetated geocellular containment systems) | Little experience, mainly pilot projects. Assurance of stability and functionality |
Revetments | Grey revetments (rip-rap, placed blocks, etc.) | Vegetated or colonized revetments | Little experience, mainly pilot projects. Assurance of stability and functionality |
Vegetated dike cover | Dense grass covers, no woody vegetation | Adaptation of seeding mixtures towards more ecologically valuable vegetation | Assurance of consistent erosion resistance |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheres, B.; Schüttrumpf, H. Enhancing the Ecological Value of Sea Dikes. Water 2019, 11, 1617. https://doi.org/10.3390/w11081617
Scheres B, Schüttrumpf H. Enhancing the Ecological Value of Sea Dikes. Water. 2019; 11(8):1617. https://doi.org/10.3390/w11081617
Chicago/Turabian StyleScheres, Babette, and Holger Schüttrumpf. 2019. "Enhancing the Ecological Value of Sea Dikes" Water 11, no. 8: 1617. https://doi.org/10.3390/w11081617
APA StyleScheres, B., & Schüttrumpf, H. (2019). Enhancing the Ecological Value of Sea Dikes. Water, 11(8), 1617. https://doi.org/10.3390/w11081617