IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+
Abstract
:1. Introduction
2. Materials and Methods
2.1. The SWAT/SWAT+ Model
2.1.1. SWAT
2.1.2. SWAT+
2.2. IPEAT/IPEAT+ Framework
2.3. IPEAT+ Control Panel and Settings
2.3.1. Technical Control File
2.3.2. Parameter Setting File
2.3.3. Observation Data File(s)
2.4. IPEAT+ Output Files
2.4.1. Calibration Parameter Sets and Objective Function Values
2.4.2. Statistical Outputs and Output Processes
2.5. Study Area and Model Setup of Example Application
2.6. Performance Evaluation
3. Results and Discussion
3.1. General Comparisons of Model Performance
3.2. Evaluation of Calibrated SWAT+ in Hydrologic Outputs
4. Conclusions and Future Development
Author Contributions
Funding
Conflicts of Interest
References
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Hantush, M.; Kalin, L.; Isik, S.; Yucekaya, A. Nutrient dynamics in flooded wetlands: I. Model development. J. Hydrol. Eng. 2013, 18, 1709–1723. [Google Scholar] [CrossRef]
- Williams, J.W.; Izaurralde, R.C.; Steglich, E.M. Agricultural Policy/Environmental Extender Model Theoretical Documentation Version 0806; Texas A&M University: College Station, TX, USA, 2012; p. 131. [Google Scholar]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigian, A.S.; Johanson, R.C. Hydrological Simulation Program--Fortran: User’s Manual for Version 11. U.S.; Environmental Protection Agency, National Exposure Research Laboratory: Athens, GA, USA, 1997; 755p.
- USDA—Natural Resources Conservation Service (NRCS). Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Great Lakes Region, Conservation Effects Assessment Project (CEAP); United States Department of Agriculture: Washington, DC, USA, 2011.
- Johnson, M.V.V.; Norfleet, M.L.; Atwood, J.D.; Behrman, K.D.; Kiniry, J.R.; Arnold, J.G.; White, M.J.; Williams, J. The Conservation Effects Assessment Project (CEAP): A national scale natural resources and conservation needs assessment and decision support tool. IOP Conf. Ser. Earth Environ. Sci. 2015, 25, 12012. [Google Scholar] [CrossRef]
- Scavia, D.; Kalcic, M.; Muenich, R.L.; Read, J.; Aloysius, N.; Bertani, I.; Boles, C.; Confesor, R.; DePinto, J.; Gildow, M.; et al. Multiple models guide strategies for agricultural nutrient reductions. Front. Ecol. Environ. 2017, 15, 126–132. [Google Scholar] [CrossRef]
- Coffey, R.; Cummins, E.; Bhreathnach, N.; O’Flaherty, V.; Cormican, M. Development of a pathogen transport model for Irish catchments using SWAT. Agric. Water Manag. 2010, 97, 101–111. [Google Scholar] [CrossRef]
- Yen, H.; Lu, S.; Feng, Q.; Wang, R.; Gao, J.; Brady, D.M.; Sharifi, A.; Ahn, J.; Chen, S.T.; Jeong, J.; et al. Assessment of Optional Sediment Transport Functions via the Complex Watershed Simulation Model SWAT. Water 2017, 9, 76. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, R.; Cooter, E.; Ran, L.; Daggupati, P.; Yang, D.; Srinivasan, R.; Jalowska, A. Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico. Biogeosciences 2018, 15, 7059–7076. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Yuan, Y.; Yen, H.; Grieneisen, M.; Arnold, J.; Wang, D.; Wang, C.; Zhang, M. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Sci. Total Environ. 2019, 669, 512–526. [Google Scholar] [CrossRef]
- Feng, Q.; Chaubey, I.; Cibin, R.; Engel, B.; Sudheer, K.P.P.; Volenec, J. Simulating establishment periods of switchgrass and Miscanthus in the soil and water assessment tool (SWAT). Am. Soc. Agric. Biol. Eng. 2017, 60, 1621–1632. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Kalin, L.; Isik, S.; Schoonover, J.E.; Lockaby, B.G. Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural Networks. J. Environ. Qual. 2010, 39, 1429–1440. [Google Scholar] [CrossRef]
- Wang, R.Y.; Bowling, L.C.; Cherkauer, K.A.; Cibin, R.; Her, Y.; Chaubey, I. Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt. Agric. Water Manag. 2017, 180, 280–296. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Engel, B.A.; Shao, G.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R. Development and improvement of the simulation of woody bioenergy crops in the Soil and Water Assessment Tool (SWAT). Environ. Model. Softw. 2018. [Google Scholar] [CrossRef]
- Guo, T.; Gitau, M.; Merwade, V.; Arnold, J.; Srinivasan, R.; Hirschi, M.; Engel, B. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest. Hydrol. Earth Syst. Sci. 2018, 22, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Yen, H.; Bailey, R.T.; Arabi, M.; Ahmadi, M.; White, M.J.; Arnold, J.G. The Role of Interior Watershed Processes in Improving Parameter Estimation and Performance of Watershed Models. J. Environ. Qual. 2014, 43, 1601–1613. [Google Scholar] [CrossRef]
- Arnold, J.G.; Bieger, K.; White, M.J.; Srinivasan, R.; Dunbar, J.A.; Allen, P.M. Use of Decision Tables to Simulate Management in SWAT+. Water 2018, 10, 713. [Google Scholar] [CrossRef]
- Wang, X.; Yen, H.; Liu, Q.; Liu, J. An auto-calibration tool for the Agricultural Policy Environmental eXtender (APEX) model. Trans. ASABE 2014, 57, 1087–1098. [Google Scholar] [CrossRef]
- Yen, H.; Wang, X.; Fontane, D.G.; Harmel, R.D.; Arabi, M. A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environ. Model. Softw. 2014, 54, 211–221. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-Time Water and Sediment-Routing Model for Large Basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Williams, J.R.; Nicks, A.D.; Arnold, J.G. Simulator for Water Resources in Rural Basins. J. Hydraul. Eng. 1985, 111, 970–986. [Google Scholar] [CrossRef]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie basin. Hydrol. Process. 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Keitzer, S.; Ludsin, S.A.; Sowa, S.; Annis, G.; Daggupati, P.; Froelich, A.M.; Herbert, M.E.; Johnson, M.V.; Yen, H.; White, M.J.; et al. Thinking outside the lake: How might Lake Erie nutrient management benefit stream conservation in the watershed? J. Great Lakes Res. 2016, 42, 1322–1331. [Google Scholar] [CrossRef]
- Yen, H.; Jeong, J.; Smith, D.R. Evaluation of Dynamically Dimensioned Search Algorithm for Optimizing SWAT by Altering Sampling Distributions and Searching Range. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 443–455. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Ayana, E.K.; Yen, H.; Jeong, J.; MacAlister, C.; Taylor, R.; Gerik, T.J.; Steenhuis, T.S. Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. Catena 2018, 163, 332–341. [Google Scholar] [CrossRef]
- Soil and Water Assessment Tool Literature Database. Available online: http://swatmodel.tamu.edu (accessed on 14 July 2019).
- Yen, H.; Jeong, J.; Tseng, W.H.; Kim, M.K.; Records, R.M.; Arabi, M. Computational Procedure for Evaluating Sampling Techniques on Watershed Model Calibration. J. Hydrol. Eng. 2015, 20, 04014080. [Google Scholar] [CrossRef]
- Yen, H.; White, M.J.; Arnold, J.G.; Keitzer, S.C.; Johnson, M.V.V.; Atwood, J.D.; Daggupati, P.; Herbert, M.E.; Sowa, S.P.; Ludsin, S.A.; et al. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios. Sci. Total Environ. 2016, 569, 1265–1281. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Jeong, J.; Wagner, K.; Flores, J.J.; Cawthon, T.; Her, Y.; Osorio, J.; Yen, H. Linking watershed modeling and bacterial source tracking to better assess E. coli sources. Sci. Total Environ. 2019, 648, 164–175. [Google Scholar] [CrossRef]
- Haas, H.; Isik, S.; Kalin, L.; Hantush, M. Studying Impacts of Wetlands in Fish River Watershed Nutrient Export through coupling of SWAT and WetQual. In Proceedings of the EWRI Congress, Pittsburgh, PA, USA, 19–23 May 2019. [Google Scholar]
Category | SWAT+ | SWAT |
---|---|---|
Calibration Support | Users can manually calibrate SWAT+ by using calibration.cal | Not Supported |
Reservoir Operation | Users can assign operation rules | Not Supported |
Coding Flexibility | Easy to modify/upgrade modularized coding structure | Conventional |
Aquifer Boundary | Can be defined flexibly without limitations | Used to be linked with HRUs* |
Connectivity | Users can define individual watershed objects | Limited spatial flexibility |
Parameters | Input File | Units | Range | Description |
---|---|---|---|---|
awc | sol | mm_H20/mm | ±100 | Available water capacity of the soil layer |
cn2 | hru | % | ±30 | Initial SCS CN II value |
delay | gw | Day | 0–500 | Groundwater delay |
epco | hru | - | 0–1 | Plant uptake compensation factor |
esco | hru | - | 0–1 | Soil evaporation compensation factor |
flo_min | gw | mm | ±100 | Minimum aquifer storage to allow return flow |
k | sol | mm/hr | ±100 | Saturated hydraulic conductivity |
revap_co | gw | - | 0.02–0.2 | Groundwater ‘revap’ coefficient |
revap_min | gw | mm | ±100 | Threshold depth of water in the shallow aquifer required for return flow to occur |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, H.; Park, S.; Arnold, J.G.; Srinivasan, R.; Chawanda, C.J.; Wang, R.; Feng, Q.; Wu, J.; Miao, C.; Bieger, K.; et al. IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water 2019, 11, 1681. https://doi.org/10.3390/w11081681
Yen H, Park S, Arnold JG, Srinivasan R, Chawanda CJ, Wang R, Feng Q, Wu J, Miao C, Bieger K, et al. IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water. 2019; 11(8):1681. https://doi.org/10.3390/w11081681
Chicago/Turabian StyleYen, Haw, Seonggyu Park, Jeffrey G. Arnold, Raghavan Srinivasan, Celray James Chawanda, Ruoyu Wang, Qingyu Feng, Jingwen Wu, Chiyuan Miao, Katrin Bieger, and et al. 2019. "IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+" Water 11, no. 8: 1681. https://doi.org/10.3390/w11081681
APA StyleYen, H., Park, S., Arnold, J. G., Srinivasan, R., Chawanda, C. J., Wang, R., Feng, Q., Wu, J., Miao, C., Bieger, K., Daggupati, P., Griensven, A. v., Kalin, L., Lee, S., Sheshukov, A. Y., White, M. J., Yuan, Y., Yeo, I. -Y., Zhang, M., & Zhang, X. (2019). IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water, 11(8), 1681. https://doi.org/10.3390/w11081681