Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Homogeneous Catalysis Experiments
2.3. Heterogeneous Catalysis Experiments
2.3.1. Preparation of Heterogeneous Catalyst
2.3.2. Catalyst Characterization
2.3.3. Catalyst Reuse
2.3.4. Flow System Using a Fixed Bed Reactor
2.4. Analytical Methods
2.4.1. Lissamine Green Concentration
2.4.2. Prednisolone Concentration
2.4.3. Iron Concentration
2.4.4. pH
2.5. Kinetic Studies
3. Results and Discussion
3.1. Homogeneous Experiments
3.2. Lissamine Green Removal by Heterogeneous Catalysis
3.3. Continuous Treatment in a Fixed Bed Reactor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Begley, C.; Caffery, B.; Chalmers, R.; Situ, P.; Simpson, T.; Nelson, J.D. Review and analysis of grading scales for ocular surface staining. Ocul. Surf. 2019, 17, 208–220. [Google Scholar] [CrossRef]
- Ćurković, L.; Ljubas, D.; Šegota, S.; Bačić, I. Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol–gel TiO2 films. J. Alloys Compd. 2014, 604, 309–316. [Google Scholar] [CrossRef]
- Alfaya, E.; Iglesias, O.; Pazos, M.; Sanromán, M.A. Environmental application of an industrial waste as catalyst for the electro-Fenton-like treatment of organic pollutants. RSC Adv. 2015, 5, 14416–14424. [Google Scholar] [CrossRef]
- Alim, S.A.; Rao, T.S.; Raju, I.M.; Kumar, M.R.; Lakshmi, K.V.D. Fabrication of visible light driven nano structured Copper, Boron codoped TiO2 for photocatalytic removal of Lissamine Green B. J. Saudi Chem. Soc. 2019, 23, 92–103. [Google Scholar] [CrossRef]
- Kongsted, P.; Svane, I.M.; Lindberg, H.; Daugaard, G.; Sengeløv, L. Low-dose prednisolone in first-line docetaxel for patients with metastatic castration-resistant prostate cancer: Is there a clinical benefit? Urol. Oncol. Semin. Orig. Investig. 2015, 33, 494.e15–494.e20. [Google Scholar] [CrossRef]
- Bal, N.; Kumar, A.; Nugegoda, D. Assessing multigenerational effects of prednisolone to the freshwater snail, Physa acuta (Gastropoda: Physidae). J. Hazard. Mater. 2017, 339, 281–291. [Google Scholar] [CrossRef]
- Yin, K.; He, Q.; Liu, C.; Deng, Y.; Wei, Y.; Chen, S.; Liu, T.; Luo, S. Prednisolone degradation by UV/chlorine process: Influence factors, transformation products and mechanism. Chemosphere 2018, 212, 56–66. [Google Scholar] [CrossRef]
- De Vrieze, E.; Van Kessel, M.A.H.J.; Peters, H.M.; Spanings, F.A.T.; Flik, G.; Metz, J.R. Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporos Int. 2014, 25, 567–578. [Google Scholar] [CrossRef]
- Bal, N.; Kumar, A.; Du, J.; Nugegoda, D. Prednisolone impairs embryonic and posthatching development and shell formation of the freshwater snail, Physa acuta. Environ. Toxicol. Chem. 2016, 35, 2339–2348. [Google Scholar] [CrossRef]
- Bertagna Silva, D.; Cruz-Alcalde, A.; Sans, C.; Giménez, J.; Esplugas, S. Performance and kinetic modelling of photolytic and photocatalytic ozonation for enhanced micropollutants removal in municipal wastewaters. Appl. Catal. B Environ. 2019, 249, 211–217. [Google Scholar] [CrossRef]
- Sopaj, F.; Rodrigo, M.A.; Oturan, N.; Podvorica, F.I.; Pinson, J.; Oturan, M.A. Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem. Eng. J. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Poza-Nogueiras, V.; Rosales, E.; Pazos, M.; Sanromán, M.Á. Current advances and trends in electro-Fenton process using heterogeneous catalysts—A review. Chemosphere 2018, 201, 399–416. [Google Scholar] [CrossRef]
- Muñoz-Morales, M.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. A new electrochemically-based process for the removal of perchloroethylene from gaseous effluents. Chem. Eng. J. 2019, 361, 609–614. [Google Scholar] [CrossRef]
- Barba, S.; Villaseñor, J.; Cañizares, P.; Rodrigo, M.A. Strategies for the electrobioremediation of oxyfluorfen polluted soils. Electrochim. Acta 2019, 297, 137–144. [Google Scholar] [CrossRef]
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 2015, 166–167, 603–643. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2017, 334, 1502–1517. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, D.; Deng, Y.; Zhang, T.; Shih, K. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms. Environ. Sci. Technol. 2016, 50, 3119–3127. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water 2018, 10, 1828. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.; Li, S.; Liu, J.; Yao, L.; Li, Y.; Zhang, H. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation. Appl. Catal. B Environ. 2016, 185, 22–30. [Google Scholar] [CrossRef]
- Pulicharla, R.; Drouinaud, R.; Brar, S.K.; Drogui, P.; Proulx, F.; Verma, M.; Surampalli, R.Y. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Chemosphere 2018, 207, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tan, X.; Liu, S.; Liu, Y.; Zeng, G.; Ye, S.; Yin, Z.; Hu, X.; Liu, N. Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: Process variables effects and matrix effects. Chem. Eng. J. 2019, 378, 122141. [Google Scholar] [CrossRef]
- Arellano, M.; Sanromán, M.A.; Pazos, M. Electro-assisted activation of peroxymonosulfate by iron-based minerals for the degradation of 1-butyl-1-methylpyrrolidinium chloride. Sep. Purif. Technol. 2019, 208, 34–41. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Zhao, Q.; Mao, Q.; Zhou, Y.; Wei, J.; Liu, X.; Yang, J.; Luo, L.; Zhang, J.; Chen, H.; Chen, H.; et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere 2017, 189, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, Y.; Wang, J.; Zeng, G.; Deng, Y.; Dong, H.; Feng, H.; Wang, J.; Peng, B. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Appl. Catal. B Environ. 2018, 231, 1–10. [Google Scholar] [CrossRef]
- Iglesias, O.; Rosales, E.; Pazos, M.; Sanromán, M.A. Electro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads. Environ. Sci. Pollut. Res. 2013, 20, 2252–2261. [Google Scholar] [CrossRef] [PubMed]
- Díez, A.M.; Ribeiro, A.S.; Sanromán, M.A.; Pazos, M. Optimization of photo-Fenton process for the treatment of prednisolone. Environ. Sci. Pollut. Res. 2018, 25, 27768–27782. [Google Scholar] [CrossRef]
- Rosales, E.; Iglesias, O.; Pazos, M.; Sanromán, M.A. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. J. Hazard. Mater. 2012, 213–214, 369–377. [Google Scholar] [CrossRef]
- Rosales, E.; Pazos, M.; Longo, M.A.; Sanromán, M.A. Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment. Chem. Eng. J. 2009, 155, 62–67. [Google Scholar] [CrossRef]
- Green, F.J. The Sigma-Aldrich Handbook of Stains, Dyes and Indicators; Aldrich Chemical Cop.: Milwaukee, WI, USA, 1990. [Google Scholar]
- Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric determination of iron (II) with 1,10-phenanthroline in the presence of large amounts of iron (III). Talanta 1974, 21, 314–318. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, W.-X.; Brown, D.G.; Sethi, D. Oxidation of lindane with Fe(II)-activated sodium persulfate. Environ. Eng. Sci. 2008, 25, 221–228. [Google Scholar] [CrossRef]
- Chen, K.F.; Kao, C.M.; Wu, L.C.; Liang, S.H.; Surampalli, R.Y. Methyl Tert-Butyl Ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: Feasibility and kinetics studies. Water Environ. Res. 2009, 81, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Santos, A.; Vicente, F.; González, C. Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chem. Eng. J. 2010, 162, 257–265. [Google Scholar] [CrossRef]
- Zhu, J.-P.; Lin, Y.-L.; Zhang, T.-Y.; Cao, T.-C.; Xu, B.; Pan, Y.; Zhang, X.-T.; Gao, N.-Y. Modelling of iohexol degradation in a Fe(II)-activated persulfate system. Chem. Eng. J. 2019, 367, 86–93. [Google Scholar] [CrossRef]
- Bu, L.; Shi, Z.; Zhou, S. Modeling of Fe(II)-activated persulfate oxidation using atrazine as a target contaminant. Sep. Purif. Technol. 2016, 169, 59–65. [Google Scholar] [CrossRef]
- Günay, T.; Çimen, Y. Degradation of 2,4,6-trichlorophenol with peroxymonosulfate catalyzed by soluble and supported iron porphyrins. Environ. Pollut. 2017, 231, 1013–1020. [Google Scholar] [CrossRef]
- Luo, C.; Jiang, J.; Ma, J.; Pang, S.; Liu, Y.; Song, Y.; Guan, C.; Li, J.; Jin, Y.; Wu, D. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. Water Res. 2016, 96, 12–21. [Google Scholar] [CrossRef]
Catalyst Concentration (g·L−1) | kobs (min−1) | R2 |
---|---|---|
0 | 0.0178 | 0.9983 |
5 | 0.0159 | 0.9920 |
10 | 0.0332 | 0.9897 |
30 | 0.0928 | 0.9952 |
τ (min) | C/C0 Lissamine Green (Experimental) | C/C0 Lissamine Green (Data from Equation (4)) | C/C0 Prednisolone (Experimental) | C/C0 Prednisolone (Data from Equation (4)) |
---|---|---|---|---|
10 | 0.553 | 0.3953 | 0.486 | 0.5775 |
20 | 0.353 | 0.1563 | 0.336 | 0.3335 |
40 | 0.197 | 0.0244 | 0.049 | 0.1112 |
60 | 0.102 | 0.0038 | 0.043 | 0.0371 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arellano, M.; Pazos, M.; Sanromán, M.Á. Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater. Water 2019, 11, 1695. https://doi.org/10.3390/w11081695
Arellano M, Pazos M, Sanromán MÁ. Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater. Water. 2019; 11(8):1695. https://doi.org/10.3390/w11081695
Chicago/Turabian StyleArellano, María, Marta Pazos, and María Ángeles Sanromán. 2019. "Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater" Water 11, no. 8: 1695. https://doi.org/10.3390/w11081695
APA StyleArellano, M., Pazos, M., & Sanromán, M. Á. (2019). Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater. Water, 11(8), 1695. https://doi.org/10.3390/w11081695