Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in a Rural Watershed Located in Louisiana, USA
Abstract
:1. Introduction
- (1)
- Simulate the effects of different best management practices to reduce nitrogen, phosphorus, and sediment in the Saline Bayou watershed by using MapShed, and
- (2)
- Determine the most cost effective combination of best management practices under alternative phosphorus reduction goals with dry, normal, and wet weather situations.
2. Study Area
3. Modeling Approach
4. Data
5. BMP Reduction Coefficients and the Optimization Technique
Calibration and Validation
6. Results from an Optimization Model
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Committee on Environment and Natural Resources (CENR). Scientific Assessment of Hypoxia in U.S. Coastal Waters; Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology; Committee on Environment and Natural Resources (CENR): Washington, DC, USA, 2010. [Google Scholar]
- Hypoxia Task Force (HTF). Gulf Hypoxia Action Plan 2008 for Reducing Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico and Improving Water Quality in the Mississippi River Basin; Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds: Washington, DC, USA, 2008.
- Paudel, K.P.; Gauthier, W.M.; Westra, J.V.; Hall, L.M. Factors influencing and steps leading to the adoption of best management practices by Louisiana dairy farmers. J. Agric. Appl. Econ. 2008, 40, 203–222. [Google Scholar] [CrossRef]
- US EPA. Waters Assessed as Impaired due to Nutrient-Related Causes. 2019. Available online: https://www.epa.gov/nutrient-policy-data/waters-assessed-impaired-due-nutrient-related-causes#rivers (accessed on 1 August 2019).
- US EPA. Office of Water and Office of Research and Development; National Rivers and Streams Assessment 2008–2009: A Collaborative Survey (EPA/841/R-16/007); US EPA: Washington, DC, USA, 2016. Available online: http://www.epa.gov/national-aquatic-resource-surveys/nrsa (accessed on 10 August 2019).
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- US EPA. National Management Measures to Control Nonpoint Source Pollution from Agriculture. 2003. Available online: https://www.epa.gov/nps/national-management-measures-control-nonpoint-source-pollution-agriculture (accessed on 1 June 2019).
- Ribaudo, M.O.; Heimlich, R.; Peters, M. Nitrogen sources and Gulf hypoxia: Potential for environmental credit trading. Ecol. Econ. 2005, 52, 159–168. [Google Scholar] [CrossRef]
- Niraula, R.; Kalin, L.; Srivastava, P.; Anderson, C.J. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecol. Model. 2013, 268, 123–133. [Google Scholar] [CrossRef]
- Tim, U.S.; Mostaghimi, S.; Shanholtz, V.O. Identification of critical nonpoint pollution source areas using geographic information systems and water quality modeling. JAWRA J. Am. Water Res. Assoc. 1992, 28, 877–887. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Kleinman, P.J.A.; McDowell, R.W.; Gitau, M.; Bryant, R.B. Modeling phosphorus transport in agricultural watersheds: Processes and possibilities. J. Soil Water Conserv. 2002, 57, 425–439. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development1; Wiley Online Library: Hoboken, NJ, USA, 1998. [Google Scholar]
- Evans, B.M.; Lehning, D.W.; Corradini, K.J.; Peterson, G.W.; Nizeyimana, E.; Hamlett, J.M.; Robillard, P.D.; Day, R.L. A Comprehensive GIS-based modelling approach for predicting nutrient loads in watersheds. J. Spat. Hydrol. 2002, 2, 1–18. [Google Scholar]
- Ouyang, W.; Hao, F.-H.; Wang, X. Regional nonpoint source organic pollution modeling and critical area identification for watershed best environmental management. Water Air Soil Pollut. 2008, 187, 251–261. [Google Scholar] [CrossRef]
- Tripathi, M.P.; Panda, R.K.; Raghuwanshi, N.S. Development of effective management plan for critical subwatersheds using SWAT model. Hydrol. Process. 2005, 19, 809–826. [Google Scholar] [CrossRef]
- Ghebremichael, L.T.; Watzin, M.T.; Veith, T.L. SWAT modeling of critical source areas of runoff and phosphorus loss: Lake Champlain Basin, VT. In Proceedings of the 2009 International SWAT Conference, Texas Water Resources Institute Technical Report No. 356, College Station, TX, USA, 4–7 July 2009; pp. 385–393. [Google Scholar]
- Niraula, R.; Norman, L.M.; Meixner, T.; Callegary, J.B. Multi-gauge calibration for modeling the semi-arid Santa Cruz Watershed in Arizona-Mexico border area using SWAT. Air Soil Water Res. 2012, 5, 41. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Baltas, E.; Mimikou, M. SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecol. Model. 2011, 222, 3500–3512. [Google Scholar] [CrossRef]
- Shang, X.; Wang, X.; Zhang, D.; Chen, W.; Chen, X.; Kong, H. An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale. Ecol. Model. 2012, 226, 1–10. [Google Scholar] [CrossRef]
- White, M.J.; Storm, D.E.; Busteed, P.R.; Stoodley, S.H.; Phillips, S.J. Evaluating nonpoint source critical source area contributions at the watershed scale. J. Environ. Qual. 2009, 38, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Gassman, P.W.; Arnold, J.G. Water quality modeling for the Raccoon River watershed using SWAT. Trans. ASABE 2007, 50, 479–493. [Google Scholar] [CrossRef]
- Srivastava, P.; McNair, J.N.; Johnson, T.E. Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. JAWRA J. Am. Water Res. Assoc. 2006, 42, 545–563. [Google Scholar] [CrossRef]
- Kirsch, K.; Kirsch, A.; Arnold, J.G. Predicting sediment and phosphorus loads in the Rock River basin using SWAT. Trans. ASAE 2002, 45, 1757–1769. [Google Scholar] [CrossRef]
- Spruill, C.A.; Workman, S.R.; Taraba, J.L. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans. ASAE 2000, 43, 1431–1439. [Google Scholar] [CrossRef]
- Soil Conservation Service. National engineering handbook. Section 4- Hydrology; United States Department of Agriculture: Washington, DC, USA, 1985.
- Soil Conservation Service. Hydrology Training Series: Module 104—Runoff Curve Number Computations Study Guide; United States Department of Agriculture: Washington, DC, USA, 1989. Available online: https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/training/runoff-curve-numbers1.pdf (accessed on 10 August 2019).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gitau, M.W.; Veith, T.L.; Gburek, W.J. Farm-level optimization of BMP placement for cost-effective pollution reduction. Trans. ASAE 2004, 47, 1923–1931. [Google Scholar] [CrossRef]
- Maringanti, C.; Chaubey, I.; Arabi, M.; Engel, B. Application of a multi-objective optimization method to provide least cost alternatives for NPS pollution control. Environ. Manag. 2011, 48, 448–461. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Guo, T.; Engel, B.A.; Flanagan, D.C.; Lee, J.G.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Wallace, C.W.; et al. Evaluating Efficiencies and Cost-effectiveness of Best Management Practices in Improving Agricultural Water Quality Using Integrated SWAT and Cost Evaluation Tool. J. Hydrol. 2019, 123965. [Google Scholar] [CrossRef]
- Xu, H.; Brown, D.G.; Moore, M.R.; Currie, W.S. Optimizing spatial land management to balance water quality and economic returns in a Lake Erie watershed. Ecol. Econ. 2018, 145, 104–114. [Google Scholar] [CrossRef]
Station ID | Type | Longitude | Latitude | Elevation (m asl) | Duration | |
---|---|---|---|---|---|---|
160277 | Rainfall/Temperature | 92.917 | 32.550 | 2001 | 2010 | |
168067 | Rainfall/Temperature | 92.650 | 32.550 | 2001 | 2010 | |
164288 | Rainfall/Temperature | 93.383 | 32.167 | 2001 | 2010 | |
168094 | Rainfall/Temperature | 93.150 | 32.367 | 2001 | 2010 | |
735200 | Discharge | 92.976 | 32.250 | 45.540 | 2001 | 2010 |
Parameters | Cover Crop | Conservation Tillage | Conservation Crop Rotation | Nutrient Management Plan | Agland Retirement | Vegetative Buffer | Fencing | Streambank Stabilization |
---|---|---|---|---|---|---|---|---|
($/ha or $/m) | 182.32 | 71.93 | 26.82 | 41.57 | 152.98 | 18.88 | 5.62 | 86.38 |
(kg/ha) | 3.11 | 0.86 | 0.54 | 5.05 | 16.43 | 0.41 | 0.01 | 0.02 |
(kg/ha) | 1.83 | 0.81 | 0.37 | 1.67 | 3.48 | 0.12 | 0.01 | 0.01 |
(tons/ha) | 0.37 | 0.32 | 0.17 | 0.00 | 1.02 | 0.05 | 0.03 | 0.04 |
Parameters | Definition | Default Value | Calibrated Values |
---|---|---|---|
Curve number (CN)
| Predicts direct runoff or infiltration from effective rainfall based on soil and land cover | Varies | 80 75 85 |
Groundwater recession Coefficient (ALPHA_BF) | Indicates the interaction between groundwater and surface water systems. | 0.1 | 0.07 |
Seepage coefficient (GW_REVAP) | Indicates the fraction of infiltrated water that goes to an underlying aquifer | 0 | 0.05 |
Erodibility factor (K)
| Indicates the susceptibility of soil to erode and the rate of runoff | 0.05–0.65 | 0.41 0.40 0.42 |
Slope length factor (LS)
| Indicates the effect of slope length on erosion which is a function of overland runoff and slope | 0.25 0.39 0.00 | |
Cropping management factor (C)
| Indicates the effect of cropping and management practice on erosion rates | 0.002–0.3 | 0.42 0.002 0.01 |
Available water cap | 0.411 |
Scenario | Cover Crops (BMP1) in hectare | Conservation Tillage (BMP2) in hectare | Conservation Plan (BMP3) in hectare | Nutrient Management (BMP4) in hectare | Agland Retirement (BMP5) in hectare | Vegetative Buffer (BMP6) in meter | Fencing (BMP7) in meter | Streambank Stabilization (BMP8) in meters | Total Cost ($) | N Level Reduced (kg) | P Level Reduced (kg) | Sediment Level Reduced (tons) | Cost($) of N Reduction per kg | Cost ($) of P Reduction per kg | Cost($) of Sediment Reduction per ton |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10% | 0.00 | 0.00 | 0.00 | 28.81 | 0.00 | 0.00 | 0.00 | 0.00 | 1197.63 | 145.39 | 48.04 | 0.000 | 8.24 | 24.93 | Undefined |
20% | 0.00 | 0.00 | 0.00 | 57.61 | 0.00 | 0.00 | 0.00 | 0.00 | 2394.85 | 290.78 | 96.08 | 0.000 | 8.24 | 24.93 | Undefined |
30% | 0.00 | 0.00 | 0.00 | 86.42 | 0.00 | 0.00 | 0.00 | 0.00 | 3592.48 | 436.16 | 144.12 | 0.000 | 8.24 | 24.93 | Undefined |
40% | 0.00 | 0.00 | 0.00 | 90.90 | 10.10 | 44.24 | 0.00 | 0.00 | 6159.06 | 642.81 | 192.16 | 12.360 | 9.58 | 32.05 | 498.31 |
50% | 56.40 | 0.00 | 0.00 | 34.50 | 10.10 | 360.00 | 0.00 | 0.00 | 20058.91 | 662.83 | 245.20 | 48.520 | 30.26 | 81.81 | 413.42 |
51% (max) | 86.05 | 0.00 | 0.00 | 4.85 | 10.10 | 360.00 | 0.00 | 0.00 | 24232.15 | 605.51 | 245.00 | 59.610 | 40.02 | 98.91 | 406.51 |
Scenario | Cover Crops (BMP1) in hectare | Conservation Tillage (BMP2) in hectare | Conservation Plan (BMP3) in hectare | Nutrient Management (BMP4) in hectare | Agland Retirement (BMP5) in hectare | Vegetative Buffer (BMP6) in meter | Fencing (BMP7) in meter | Streambank Stabilization (BMP8) in meters | Total Cost ($) | N Level Reduced (kg) | P Level Reduced (kg) | Sediment Level Reduced (tons) | Cost($) of N Reduction per kg | Cost ($) of P Reduction per kg | Cost($) of Sediment Reduction per ton |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10% | 0.00 | 0.00 | 0.00 | 27.97 | 0.00 | 0.00 | 0.00 | 0.00 | 1162.71 | 230.03 | 75.36 | 0 | 5.05 | 15.43 | Undefined |
20% | 0.00 | 0.00 | 0.00 | 55.93 | 0.00 | 0.00 | 0.00 | 0.00 | 2325.01 | 460.05 | 150.72 | 0 | 5.05 | 15.43 | Undefined |
30% | 0.00 | 0.00 | 0.00 | 83.90 | 0.00 | 0.00 | 0.00 | 0.00 | 3487.72 | 690.08 | 226.08 | 0 | 5.05 | 15.43 | Undefined |
40% | 0.00 | 0.00 | 0.00 | 91.09 | 9.91 | 44.24 | 0.00 | 0.00 | 6137.89 | 1014.57 | 301.44 | 14.42 | 6.05 | 20.36 | 425.65 |
50% | 9.80 | 0.00 | 0.00 | 81.10 | 10.10 | 360.00 | 0.00 | 0.00 | 13499.96 | 1255.68 | 376.8 | 44.53 | 10.75 | 35.83 | 303.17 |
51% (max) | 90.86 | 0.00 | 0.00 | 0.04 | 10.10 | 360.00 | 0.00 | 0.00 | 24909.16 | 1051.53 | 399.41 | 87.95 | 23.69 | 62.36 | 283.22 |
Scenario | Cover Crops (BMP1) in hectare | Conservation Tillage (BMP2) in hectare | Conservation Plan (BMP3) in hectare | Nutrient Management (BMP4) in hectare | Agland Retirement (BMP5) in hectare | Vegetative Buffer (BMP6) in meter | Fencing (BMP7) in meter | Streambank Stabilization (BMP8) in meters | Total Cost ($) | N Level Reduced (kg) | P Level Reduced (kg) | Sediment Level Reduced (tons) | Cost($) of N Reduction per kg | Cost ($) of P Reduction per kg | Cost($) of Sediment Reduction per ton |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10% | 0.00 | 0.00 | 0.00 | 33.75 | 0.00 | 0.00 | 0.00 | 0.00 | 1402.99 | 62.32 | 36.95 | 0 | 22.51 | 37.97 | Undefined |
20% | 0.00 | 0.00 | 0.00 | 67.50 | 0.00 | 0.00 | 0.00 | 0.00 | 2805.98 | 124.65 | 73.9 | 0 | 22.51 | 37.97 | Undefined |
30% | 0.00 | 0.00 | 0.00 | 100.75 | 0.25 | 0.00 | 0.00 | 0.00 | 4226.42 | 187.54 | 120.85 | 0.091 | 22.54 | 34.97 | 46444.20 |
40% | 59.66 | 0.00 | 0.00 | 31.24 | 10.10 | 360.00 | 0.00 | 0.00 | 20517.76 | 195.24 | 217.8 | 24.824 | 105.09 | 94.20 | 826.53 |
41% (max) | 90.90 | 0.00 | 0.00 | 0.00 | 10.10 | 360.00 | 360.00 | 0.00 | 26937.99 | 158.85 | 249.49 | 30.413 | 169.58 | 107.97 | 885.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokhrel, B.K.; Paudel, K.P. Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in a Rural Watershed Located in Louisiana, USA. Water 2019, 11, 1714. https://doi.org/10.3390/w11081714
Pokhrel BK, Paudel KP. Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in a Rural Watershed Located in Louisiana, USA. Water. 2019; 11(8):1714. https://doi.org/10.3390/w11081714
Chicago/Turabian StylePokhrel, Bijay K., and Krishna P. Paudel. 2019. "Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in a Rural Watershed Located in Louisiana, USA" Water 11, no. 8: 1714. https://doi.org/10.3390/w11081714
APA StylePokhrel, B. K., & Paudel, K. P. (2019). Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in a Rural Watershed Located in Louisiana, USA. Water, 11(8), 1714. https://doi.org/10.3390/w11081714