Examination of Changes in Flood Data in Australia
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Mann–Kendall Test
3.2. Adaptation of Mann–Kendall Test to Account for Serial Correlation
- (1)
- The slope of trend of the AM flood data series is predicted using the non-parametric Sen’s estimator of slope procedures developed by Sen (1968) [52]:
- (2)
- Assuming that the existing trend in AM flood data is monotonic and the data are detrended using the following expression:
- (3)
- Then the MK test variance is computed using the following equation:
3.3. Pettitt Test for Change-Point Detection
4. Results
4.1. Trend Analysis under Monotonic Assumption
4.2. Change-Point Analysis
5. Spatial Distribution of Observed Trends
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aziz, K.; Rahman, A.; Fang, G.; Shreshtha, S. Application of Artificial Neural Networks in Regional Flood Frequency Analysis: A Case Study for Australia. Stoch. Environ. Res. Risk Assess. 2014, 28, 541–554. [Google Scholar] [CrossRef]
- Milly, P.; Wetherald, R.; Dunne, K.; Delworth, T. Increasing risk of great floods in a changing climate. Nature 2002, 415, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Svensson, C.; Kundzewicz, Z.W.; Maurer, T. Trend detection in river flow series: 2. Flood and low-flow index series. Hydrol. Sci. J. 2005, 50. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Paul, B.K.; Mahmood, S. Selected physical parameters as determinants of flood fatalities in Bangladesh, 1972–2013. Nat. Hazards 2016, 83, 1703. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Mitigation of Climate Change; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O., Bosch, P., Dave, R., Meyer, L., Eds.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Blunden, J.; Derek, S.A. State of the Climate 2012; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia; The Australian Government Bureau of Meteorology (BOM): Melbourne, Australia, 2012.
- Mamoon, A.A.; Jeorgensen, N.E.; Rahman, A.; Qasem, H. Design Rainfall in Qatar: Sensitivity to Climate Change Scenarios. Nat. Hazards 2016, 81, 1797–1810. [Google Scholar] [CrossRef]
- Ishak, E.; Haddad, K. Zaman and Rahman Scaling property of regional floods in New South Wales Australia. Nat. Hazards 2011, 58, 1155–1167. [Google Scholar] [CrossRef]
- Hirschboeck, K.K.; Ely, L.L.; Maddox, R.A. Hydroclimatology of Meteorologic Floods, Inland Flood Hazards; Wohl, E.E., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000; pp. 39–72. [Google Scholar]
- Jain, S.; Lall, U. Floods in a changing climate: Does the past represent the future? Water Resour. Res. 2001, 37, 3193–3205. [Google Scholar] [CrossRef]
- Franks, S.W.; Kuczera, G. Flood frequency analysis: Evidence and implications of secular climate variability, New South Wales. Water Resour. Res. 2002, 38, 1062. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Ondo, J.C.; Gachon, P.; Bobée, B. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. J. Hydrol. 2006, 329, 534–552. [Google Scholar] [CrossRef]
- Raff, D.; Pruitt, T.; Brekke, L. A framework for assessing flood frequency based on climate projection information. Hydrol. Earth Syst. Sci. 2009, 13, 2119. [Google Scholar] [CrossRef]
- Shaoo, S.N.; Sreeja, P. Relationship between peak rainfall intensity (PRI) and maximum flood depth (MFD) in an urban catchment of Northeast India. Nat. Hazards 2016, 83, 1527. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Searching for change in hydrological data—Editorial. Hydrol. Sci. J. 2004, 49, 3–6. [Google Scholar] [CrossRef]
- Plummer, N.; Salinger, M.J.; Nicholls, N.; Suppiah, R.; Hennessy, K.J.; Leighton, R.M.; Trewin, B.; Page, C.M.; Lough, J.M. Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim. Chang. 1999, 42, 183–202. [Google Scholar] [CrossRef]
- Smith, I. An Assessment of Recent Trends in Australian Rainfall. Aust. Meteorol. Mag. 2004, 53, 163–173. [Google Scholar]
- Griffiths, G.M.; Chambers, L.E.; Haylock, M.R.; Manton, M.J.; Nicholls, N.; Baek, H.J.; Choi, Y.; Della-Marta, P.M.; Gosai, A.; Iga, N.; et al. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. Int. J. Climatol. 2005, 25, 1301–1330. [Google Scholar] [CrossRef]
- Gallant, A.J.E.; Hennessy, K.J.; Risbey, J. Trends in rainfall indices for six Australian regions: 1910–2005. Aust. Meteorol. Mag. 2007, 56, 223–239. [Google Scholar]
- Alexander, L.V.; Hope, P.; Collins, D.; Trewin, B.; Lynch, A.; Nicholls, N. Trends in Australia’s climate means and extremes: A global context. Aust. Meteorol. Mag. 2007, 56, 1–18. [Google Scholar]
- Pook, M.; Lisson, S.; Risbey, J.; Ummenhofer, C.; McIntosh, P.; Rebbeck, M. The autumn break for cropping in southeast Australia: Trends, synoptic influences and impacts on wheat yield. Int. J. Climatol. 2009, 29, 2012–2026. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Dynamics of late autumn rainfall reduction over southeastern Australia. Geophys. Res. Lett. 2008, 35, L09708. [Google Scholar] [CrossRef]
- Taschetto, A.S.; England, M.H. An analysis of late twentieth century trends in Australian rainfall. Int. J. Climatol. 2009, 29, 791–807. [Google Scholar] [CrossRef]
- Alexander, L.V.; Arblaster, J.M. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol. 2009, 29, 417–435. [Google Scholar] [CrossRef]
- Johnson, F.; Sharma, A. A Comparison of Australian Open Water Body Evaporation Trends for Current and Future Climates Estimated from Class A Evaporation Pans and General Circulation Models. J. Hydrometeorol. 2010, 11, 105–121. [Google Scholar] [CrossRef]
- Laz, O.U.; Rahman, A.; Yilmaz, A.; Haddad, K. Trends in sub hourly, sub daily and daily extreme rainfall events in eastern Australia. J. Water Clim. Chang. 2014, 5, 667–675. [Google Scholar] [CrossRef]
- Chiew, F.H.; McMahon, T.A. Detection of trend or change in annual flow of Australian rivers. Int. J. Climatol. 1993, 13, 643–653. [Google Scholar] [CrossRef]
- Kiem, A.S.; Franks, S.W.; Kuczera, G. Multi-decadal variability of flood risk. Geophys. Res. Lett. 2003, 30, 1035. [Google Scholar] [CrossRef]
- Micevski, T.; Franks, S.W.; Kuczera, G. Multidecadal variability in coastal eastern Australian flood data. J. Hydrol. 2006, 327, 219–225. [Google Scholar] [CrossRef]
- Pui, A.; Lal, A.; Sharma, A. How does the Interdecadal Pacific Oscillation affect design floods in Australia? Water Resour. Res. 2011, 47, W05554. [Google Scholar] [CrossRef]
- Murphy, B.F.; Timbal, B. A review of recent climate variability and climate change in south-eastern Australia. Int. J. Climatol. 2008, 28, 859–879. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophys. Res. Lett. 2008, 35, L07701. [Google Scholar] [CrossRef]
- Kiem, A.S.; Verdon-Kidd, D.C. Climatic drivers of Victorian streamflow: Is ENSO the dominant influence? Aust. J. Water Resour. 2009, 13, 17–30. [Google Scholar] [CrossRef]
- Ishak, E.H.; Rahman, A.; Westra, S.; Sharma, A.; Kuczera, G. Evaluating non-stationrity of Australian annual maximum flood. J. Hydrol. 2013, 494, 134–145. [Google Scholar] [CrossRef]
- Ishak, E.; Rahman, A.; Westra, S.; Sharma, A.; Kuczera, G. Preliminary Analysis of Trends in Australian Flood Data. World Environ. Water Resour. Congr. 2010, 2010, 115–124. [Google Scholar]
- Ishak, E.; Rahman, A. Detection of changes in flood data in Victoria, Australia over 1975–2011. Hydrol. Res. 2015, 46, 763–776. [Google Scholar] [CrossRef]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Am. Meteorol. Soc. 2001, 82, 219–246. [Google Scholar] [CrossRef]
- Birsan, M.V.; Molnar, P.; Burlando, P.; Pfaundler, M. Streamflow trends in Switzerland. J. Hydrol. 2005, 314, 312–329. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L. Temporal evolution of low flow regimes in Canadian rivers. Water Resour. Res. 2008, 44, W08436. [Google Scholar] [CrossRef]
- Ehsanzadeh, E.; Ouarda, T.B.M.J.; Saley, H.M. A simultaneous analysis of gradual and abrupt changes in Canadian low streamflow. Hydrol. Process. 2011, 25, 727–739. [Google Scholar] [CrossRef]
- Novotny, E.V.; Stefan, H.G. Stream flow in Minnesota: Indicator of climate change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Serinaldi, F.; Ntelekos, A.A. Analyses of seasonal and annual maximum daily discharge records for central Europe. J. Hydrol. 2011, 399, 299–312. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Graczyk, D.; Maurer, T.; Pińskwar, I.; Radziejewski, M.; Svensson, C.; Szwed, M. Trend detection in river flow series: 1. Annual maximum flow. Hydrol. Sci. J. 2005, 50, 797–810. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A.; Green, J. Design Rainfall Estimation in Australia: A Case Study using L moments and Generalized Least Squares Regression. Stoch. Environ. Res. Risk Assess. 2011, 25, 815–825. [Google Scholar] [CrossRef]
- Loveridge, M.; Rahman, A. Quantifying uncertainty in rainfall-runoff models due to design losses using Monte Carlo simulation: A case study in New South Wales, Australia. Stoch. Environ. Res. Risk Assess. 2014, 28, 2149–2159. [Google Scholar] [CrossRef]
- Holper, P.N.; CSIRO. Climate Change Science Information Paper: Australian Rainfall—Past, Present and Future; CSIRO: Aspendale, Victoria, Australia, 2011; pp. 1–18.
- Institution of Engineers Australia (I. E. Aust.). Australian Rainfall and Runoff—A Guide to Flood Estimation; I. E. Aust.: Canberra, Australia, 2001. [Google Scholar]
- GWA (Government of Western Australia). Department of Mines and Petroleum Geology of Western Australia. 2013. Available online: http://www.dmp.wa.gov.au/11636.aspx (accessed on 17 January 2013).
- Haddad, K.; Rahman, A.; Weinmann, P.E.; Kuczera, G.; Ball, J.E. Streamflow data preparation for regional flood frequency analysis: Lessons from south-east Australia. Aust. J. Water Resour. 2010, 14, 17–32. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin & Co: Griffin, London, UK, 1975. [Google Scholar]
- Burn, D.H.; Hag Elnur, M.A. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.J.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Collins, M.J. Evidence for changing flood risk in New England since the late 20th Century. J. Am. Water Resour. Assoc. 2009, 45, 279–290. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability: Applications of Statistical Techniques; Von Storch, H., Navarra, A., Eds.; Springer: Berlin, Germany, 1995; pp. 11–26. [Google Scholar]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Pettitt, A. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; England, M.H.; McIntosh, P.C.; Meyers, G.A.; Pook, M.J.; Risbey, J.S.; Gupta, A.S.; Taschetto, A.S. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 2009, 36, L04706. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Sen Gupta, A.; Taschetto, A.S.; England, M.H. Modulation of Australian precipitation by meridional gradients in East Indian Ocean sea surface temperature. J. Clim. 2009, 22, 5597–5610. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A. Flood peak distribution for eastern United States. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Hong, X.D.; Westra, S.; Leonard, M. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol. 2017, 552, 28–43. [Google Scholar]
- Hajani, E.; Rahman, A. Characterising Changes in Rainfall: A Case Study for New South Wales, Australia. Int. J. Climatol. 2018, 38, 1452–1462. [Google Scholar] [CrossRef]
Study Period | General Trends | Significant Trends | |||||||
---|---|---|---|---|---|---|---|---|---|
5% Significance Level | 10% Significance Level | ||||||||
Total | Negative | Positive | Total | Negative | Positive | Total | Negative | Positive | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
30-year | 330 | 258 | 66 | 37 | 34 | 3 | 71 | 64 | 7 |
40-year | 77 | 52 | 25 | 6 | 6 | 0 | 16 | 15 | 1 |
50-year | 21 | 14 | 6 | 7 | 6 | 1 | 7 | 6 | 1 |
Number of Sites with Change-Point | ||||||
---|---|---|---|---|---|---|
Study Period | 1970–1975 | 1976–1980 | 1981–1985 | 1986–1990 | 1991–1995 | 1996–2000 |
30-year | - | - | 5 | 6 | 42 | 21 |
40-year | 2 | 2 | 1 | 2 | 7 | - |
50-year | 1 | 4 | - | - | 2 | - |
Study Period | Trend (1) | Change-Point (2) | Common (3) | Remaining Only Trend (4) | Remaining Only Change-Point (5) |
---|---|---|---|---|---|
At the Significance Level of 5% | |||||
30-year | 37 | 42 | 25 | 12 | 16 |
40-year | 6 | 6 | 3 | 3 | 3 |
50-year | 7 | 7 | 6 | - | 1 |
At the Significance Level of 10% | |||||
30-year | 71 | 74 | 43 | 28 | 31 |
40-year | 16 | 14 | 11 | 5 | 3 |
50-year | 7 | 7 | 7 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishak, E.; Rahman, A. Examination of Changes in Flood Data in Australia. Water 2019, 11, 1734. https://doi.org/10.3390/w11081734
Ishak E, Rahman A. Examination of Changes in Flood Data in Australia. Water. 2019; 11(8):1734. https://doi.org/10.3390/w11081734
Chicago/Turabian StyleIshak, Elias, and Ataur Rahman. 2019. "Examination of Changes in Flood Data in Australia" Water 11, no. 8: 1734. https://doi.org/10.3390/w11081734
APA StyleIshak, E., & Rahman, A. (2019). Examination of Changes in Flood Data in Australia. Water, 11(8), 1734. https://doi.org/10.3390/w11081734