Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Optimization of incubation conditions of Arthrospira;
- Investigation of the processes of organic toxicant metabolism and binding heavy metals in cells of Arthrospira;
- Revelation of enzymes and enzymatic systems of Arthrospira, participating in the transformation of organic toxicants and chelating of heavy metals.
4. Conclusions
- Water remediation was occurring by 97%, in the case of 56 mg/L concentration of TNT and 3.5 g/L initial content of Arthrospira;
- The degree of cleaning was 90%, in the case of 10 mg/L concentration of DDT and 4.0 g/L initial content of Arthrospira;
- The degree of cleaning was 90%, in the case of 100 mg/L concentration of cesium ions and 3.5 g/L initial content of Arthrospira.
Author Contributions
Funding
Conflicts of Interest
References
- Kvesitadze, G.; Khatisashvili, G.; Sadunishvili, T.; Ramsden, J.J. Biochemical Mechanisms of Detoxification in Higher Plants. Basis of Phytoremediation; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006. [Google Scholar]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plants Physiol. Mol. Biol. 1998, 49, 643–668. [Google Scholar] [CrossRef] [PubMed]
- Tsao, D.T. Phytoremediation; Advances in Biochemical Engineering and Biotechnology; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003. [Google Scholar]
- Phang, S.M.; Chu, W.L.; Rabiei, R. Phycoremediation. In The Algae World; Sahoo, D., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 357–389. [Google Scholar]
- Rangsayatorn, N.; Upatham, E.S.; Kruatrachue, M.; Pokethitiyook, P.; Lanza, G.R. Phytoremediation potential of Spirulina Arthrospira platensis: Biosorption and toxicity studies of cadmium. Environ. Pollut. 2002, 119, 45–53. [Google Scholar] [CrossRef]
- Jacques, N.R.; McMartin, D.W. Evaluation of algal phytoremediation of light extractable petroleum hydrocarbons in subarctic climates. Remediat. J. 2009, 20, 119–132. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghufran, R.; Wahid, Z.A. Cd, As, Cu and Zn transfer through dry to rehydrated biomass of Spirulina Platensis from wastewater. Polish J. Environ. Stud. 2010, 19, 887–893. [Google Scholar]
- Arif, I.A.; Bakir, M.A.; Khan, H.A. Microbial Remediation of Pesticides. In Pesticides: Evaluation of Environmental Pollution; Rathore, H.S., Nollet, L.M.L., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 131–144. [Google Scholar]
- Matamoros, V.; Gutiérrez, R.; Ferrer, I.; García, J.; Bayona, J.M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. J. Hazard. Mater. 2015, 288, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Iasimone, F.; Panico, A.; De Felice, V.; Fantasma, F.; Iorizzi, M.; Pirozzi, F. Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. J. Environ. Manag. 2018, 223, 1078–1085. [Google Scholar] [CrossRef]
- Markou, G.; Depraetere, O.; Vandamme, D.; Muylaert, K. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption. J. Mol. Sci. 2015, 16, 4250–4264. [Google Scholar] [CrossRef]
- Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551–578. [Google Scholar]
- Khan, Z.; Bhadouria, P.; Bisen, P.S. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Górecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Mitina, T.; Grozdov, D.; Yushin, N.; Culicov, O. Application of Arthrospira (Spirulina) platensis biomass for silver removal from aqueous solutions. Int. J. Phytoremediat. 2017, 19, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pan, S. Bioremediation potential of Spirulina: Toxicity and biosorption studies of lead. J. Zhejiang Univ. Sci. B 2005, 6, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Murali, O.; Mehar, S. Bioremediation of heavy metals using Spirulina. Int. J. Geol. Earth Environ. Sci. 2014, 4, 244–249. [Google Scholar]
- Fukuda, S.; Lwamoto, K.; Asumi, M.; Yokoyama, A.; Nakayama, T.; Ishida, K.; Inouye, I.; Shraiwa, Y. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment. J. Plant Res. 2014, 127, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zazouli, M.A.; Mahvi, A.H.; Dobaradaran, S.; Barafrashtehpour, M.; Mahdavi, Y.; Balarak, D. Adsorption of fluoride from aqueous solution by modified Azolla filiculoides. Fluoride 2014, 47, 349–358. [Google Scholar]
- Shi, W.; Wang, L.; Rousseau, D.P.L.; Lens, P.N.L. Removal of estrone, 17α-ethinylestradiol, and 17β-estradiol in algae and duckweed-based wastewater treatment systems. Environ. Sci. Pollut. Res. 2010, 17, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, C.; Bose, R.; Taylor, J.R.; McKee, J.; Lapointe, C.; Birchall, J. Cesium in mammals: Acute toxicity, organ changes and tissue accumulation. J. Environ. Sci. Health Part A 1981, 16, 549–567. [Google Scholar] [CrossRef]
- Rundo, J. A Survey of the Metabolism of Caesium in Man. Br. J. Radiol. 1964, 37, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, A.L.; Naidu, R. Explosives: Fate, dynamics, and ecological impact in terrestrial and marine environments. Rev. Environ. Contam. Toxicol. 2007, 191, 163–215. [Google Scholar]
- Konradsen, F.; Van der Hoek, W.; Amerasinghe, F.P.; Mutero, C.; Boelee, E. Engineering and malaria control: Learning from the past 100 years. Acta Trop. 2004, 89, 99–108. [Google Scholar] [CrossRef]
- Adamia, G.; Chogovadze, M.; Chokheli, L.; Gigolashvili, G.; Gordeziani, M.; Khatisashvili, G.; Kurashvili, M.; Pruidze, M.; Varazi, T. About possibility of alga Spirulina application for phytoremediation of water polluted with 2,4,6-trinitrotoluene. Ann. Agrar. Sci. 2018, 16, 348–351. [Google Scholar] [CrossRef]
- Kurashvili, M.; Varazi, T.; Khatisashvili, G.; Gigolashvili, G.; Adamia, G.; Pruidze, M.; Gordeziani, M.; Chokheli, L.; Japharashvili, S.; Khuskivadze, N. Blue-green Alga Spirulina as a Tool Against Water pollution by 1,1′-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene) (DDT). Ann. Agrar. Sci. 2018, 16, 405–409. [Google Scholar] [CrossRef]
- Kurashvili, M.; Adamia, G.; Varazi, T.; Khatisashvili, G.; Gigolashvili, G.; Pruidze, M.; Chokheli, L.; Japharashvili, S. Application of Blue-green Alga Spirulina for removing Caesium ions from polluted water. Ann. Agrar. Sci. 2019, in press. [Google Scholar]
- Butterwick, C.; Heaney, S.I.; Talling, J.F. A comparison of eight methods for estimating the biomass and growth of planktonic algae. Br. Phycol. J. 1982, 17, 69–79. [Google Scholar] [CrossRef]
- Garrido Frenich, A.; Martínez Vidal, J.L.; Moreno Frías, M.; Olea-Serrano, F.; Olea, N.; Cuadros Rodriguez, L. Determination of organochlorine pesticides by GC-ECD and GC-MS-MS techniques including an evaluation of the uncertainty associated with the results. Chromatographia 2003, 57, 213–220. [Google Scholar] [CrossRef]
- Oh, B.; Sarath, G.; Drijber, R.A.; Comfort, S.D. Rapid spectrophotometric determination of 2,4,6-trinitrotoluene in a Pseudomonas enzyme assay. Microbiol. Methods 2000, 42, 149–158. [Google Scholar] [CrossRef]
- Guba, L.V.; Dovgyy, I.I.; Rizhkova, M.A. Method of measuring of cesium by flame emission photometry method. Sci. Notes Taurida V. Vernadsky Natl. Univ. Ser. Biol. Chem. 2012, 25, 284–288. [Google Scholar]
- Mondal, M.; Halder, G.; Oinam, G.; Indrama, T.; Tiwari, O.N. Bioremediation of Organic and Inorganic Pollutants Using Microalgae. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–235. [Google Scholar]
Number of Model Experiment | Initial Content of Arthrospira in Polluted Water, g/L | Content of DDT in Polluted Water, mg/L | |
---|---|---|---|
Initial (before Incubation) | Final (after Incubation) | ||
DDT-1 | 3.0 | 10 | 2.56 ± 0.15 |
DDT-2 | 3.5 | 10 | 1.42 ± 0.08 |
DDT-3 | 4.0 | 10 | 0.98 ± 0.06 |
DDT-4 | 4.5 | 10 | 0.97 ± 0.06 |
DDT-5 | 4.5 | 15 | 3.49 ± 0.21 |
Number of Model Experiment | Initial Content of Arthrospira in Polluted Water, g/L | Content of TNT in Polluted Water, mg/L | |
---|---|---|---|
Initial (before Incubation) | Final (after Incubation) | ||
TNT-1 | 3.0 | 22.5 | 2.61 ± 0.13 |
TNT-2 | 3.3 | 56.0 | 4.50 ± 0.25 |
TNT-3 | 3.5 | 56.0 | 1.80 ± 0.11 |
Number of Model Experiment | Initial Content of Arthrospira in Polluted Water, g/L | Content of Cs+ Ions in Polluted Water, mg/L | |
---|---|---|---|
Initial (before Incubation) | Final (after Incubation) | ||
CS-1 | 3.0 | 100 | 18.3 ± 0.91 |
CS-2 | 3.5 | 100 | 10.3 ± 0.06 |
CS-3 | 4.0 | 100 | 9.90 ± 0.05 |
CS-4 | 4.5 | 150 | 25.1 ± 2.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabagari, I.; Kurashvili, M.; Varazi, T.; Adamia, G.; Gigolashvili, G.; Pruidze, M.; Chokheli, L.; Khatisashvili, G.; von Fragstein und Niemsdorff, P. Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water. Water 2019, 11, 1759. https://doi.org/10.3390/w11091759
Tabagari I, Kurashvili M, Varazi T, Adamia G, Gigolashvili G, Pruidze M, Chokheli L, Khatisashvili G, von Fragstein und Niemsdorff P. Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water. Water. 2019; 11(9):1759. https://doi.org/10.3390/w11091759
Chicago/Turabian StyleTabagari, Inga, Maritsa Kurashvili, Tamar Varazi, George Adamia, George Gigolashvili, Marina Pruidze, Liana Chokheli, Gia Khatisashvili, and Peter von Fragstein und Niemsdorff. 2019. "Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water" Water 11, no. 9: 1759. https://doi.org/10.3390/w11091759
APA StyleTabagari, I., Kurashvili, M., Varazi, T., Adamia, G., Gigolashvili, G., Pruidze, M., Chokheli, L., Khatisashvili, G., & von Fragstein und Niemsdorff, P. (2019). Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water. Water, 11(9), 1759. https://doi.org/10.3390/w11091759