Effects of Climate Change and Flow Regulation on the Flow Characteristics of a Low-Relief River within Southern Boreal Climate Area
Abstract
:1. Introduction
2. Study Area
2.1. Southern Boreal Climate Area and the Expected Hydro-Climatological Changes
2.2. General Description of the Study Area
2.3. Current Regulation of the Kokemäenjoki Watershed
3. Data and Methods
3.1. Boundary Conditions for the CFD: Future Hydrological Scenarios and Regulation Strategies
3.1.1. Climate and Hydrological Scenarios
3.1.2. Future Discharges and Water Levels with Alternative Regulation Strategies
3.2. Computational Fluid Dynamics
3.2.1. Field Data
3.2.2. D CFD Implementation and Calibration
4. Results
5. Discussion
5.1. The Effect of Climate Change and Flow Regulation on the Flow Characteristics
5.2. Uncertainties in the Methodological Approach
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McCully, P. Silenced Rivers; Zed Books: London, UK, 1996. [Google Scholar]
- Nilsson, C.; Berggen, K. Alterations of riparian ecosystems caused by river regulation. Bioscience 2000, 50, 783. [Google Scholar] [CrossRef]
- Petts, G.E. Impounded Rivers; John Wiley & Sons: Chichester, UK, 1984. [Google Scholar]
- Shields, F.D.; Simon, A.; Steffen, L.J. Reservoir effects on downstream river channel migration. Environ. Conserv. 2000, 27, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Church, M. Geomorphic response to river flow regulation: Case studies and time-scales. Regul. Rivers Res. Manag. 1995, 11, 3–22. [Google Scholar] [CrossRef]
- Draut, A.E.; Logan, J.B.; Mastin, M.C. Channel evolution on the dammed Elwha River, Washington, USA. Geomorpgology 2011, 127, 71–87. [Google Scholar] [CrossRef]
- Fergus, T. Geomorphological response of a river regulated for hydropower: River Fortun, Norway. River Res. Appl. 1997, 13, 449–461. [Google Scholar] [CrossRef]
- Grams, P.E.; Schmidt, J.C.; Topping, D.J. The rate and pattern of bed incision and bank adjustment on the Colorado River in Glen Canyon downstream from Glen Canyon Dam, 1956–2000. Geol. Soc. Am. Bull. 2007, 119, 556–575. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jlang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirsand regulated rivers: Experiences from five continents. Earth Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, H.Q.; Nanson, G.C.; Li, Y.; Yao, W. Channel adjustments in response to the operation of large dams: The upper reach of the lower Yellow River. Geomorpgology 2012, 147, 35–48. [Google Scholar] [CrossRef]
- Mosley, M.P. Analysis of the effect of changing discharge on channel morphology and instream uses in a Braided River, Ohau River, New Zealand. Water Resour. Res. 1982, 18, 800–812. [Google Scholar] [CrossRef]
- Petts, G.E. Complex response of river channel morphology subsequent to reservoir construction. Prog. Phys. Geogr. 1979, 3, 329. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dysenius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef]
- Heggens, J.; Alfredsen, K.; Bustos, A.A.; Huusko, A.; Stickler, M. Be cool: A review of hydro-physical changes and fish responses in winter in hydropower-regulated northern streams. Environ. Biol. Fishes 2018, 101, 1–21. [Google Scholar] [CrossRef]
- Rădoane, M.; Ciaglic, V.; Rădoane, N. Hydropower impact on the ice jam formation on the upper Bistrita River, Romania. Cold Reg. Sci. Technol. 2010, 60, 193–204. [Google Scholar] [CrossRef]
- Berga, L. The Role of Hydropower in climate change mitigation and adaptation: A Review. Engineering 2016, 2, 313–318. [Google Scholar] [CrossRef]
- Hamududu, B.; Killingtveit, A. Assessing climate change impacts on global hydropower. Energies 2012, 5, 305–322. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303. [Google Scholar] [CrossRef]
- Thodsen, H.; Hashol, T.B.; Kjærsgaard, J.H. The influence of climate change on suspended sediment transport in Danish rivers. Hydrol. Process. 2008, 22, 764–774. [Google Scholar] [CrossRef]
- Verhaar, P.M.; Biron, P.M.; Ferguson, R.I.; Hoey, T.B. Numerical modelling of climate change impacts on Saint-Lawrence River tributaries. Earth Surf. Process. Landf. 2010, 35, 1184–1198. [Google Scholar] [CrossRef]
- Kay, A.L.; Davies, H.N.; Bell, V.A.; Jones, R.G. Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Clim. Chang. 2009, 92, 41–63. [Google Scholar] [CrossRef]
- Markoff, M.S.; Cullen, A.C. Impact of climate change on pacific Northwest hydropower. Clim. Chang. 2008, 87, 469. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Veijalainen, N. Estimation of Climate Change Impacts on Hydrology and Floods in FINLAND; Aalto University: Espoo, Finland, 2012; ISBN 978-952-60-4614-3. [Google Scholar]
- Johansson, M.M.; Kahma, K.K.; Boman, H.; Launiainen, J. Scenarios for sea level on the Finnish coast. Boreal Environ. Res. 2004, 9, 153–166. [Google Scholar]
- Miettinen, A.; Jansson, H.; Alenius, T.; Haggrén, G. Late Holocene sea-level changes along the southern coast of Finland, Baltic Sea. Mar. Geol. 2007, 242, 27–38. [Google Scholar] [CrossRef]
- Ojala, E.; Louekari, S. The merging of human activity and natural change: Temporal and spatial scales of ecological change in the Kokemäenjoki river delta, SW Finland. Landsc. Urban Plan. 2002, 61, 83–98. [Google Scholar] [CrossRef]
- Kingsford, R.T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol. 2000, 25, 109–127. [Google Scholar] [CrossRef]
- Yang, G.; Guo, S.; Li, L.; Hong, X.; Wang, L. Multi-Objective Operating Rules for Danjiangkou Reservoir Under Climate Change. Water Resour. Manag. 2016, 30, 1183–1202. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Veijalainen, N.; Lotsari, E.; Alho, P.; Vehviläinen, B.; Käyhkö, J. National scale assessment of climate change impacts on flooding in Finland. J. Hydrol. 2010, 391, 333–350. [Google Scholar] [CrossRef]
- Humborg, C.; Ittekkot, V.; Cociasu, A.; VonBodungen, B. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 1997, 386, 385. [Google Scholar] [CrossRef]
- Palmer, M.A.; Liermann, C.A.R.; Nilsson, C.; Flörke, M.; Alcamo, J.; Lake, P.S.; Bond, N. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Amin, M.Z.M.; Shaaban, A.J.; Ercan, A.; Ishida, K.; Kavvas, M.L.; Chen, Z.Q.; Jang, S. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Sci. Total Environ. 2017, 575, 12–22. [Google Scholar] [CrossRef]
- Andréasson, J.; Bergström, S.; Carlsson, B.; Graham, L.P.; Lindström, G. Hydrological Change—Climate Change Impact Simulations for Sweden. AMBIO A J. Hum. Environ. 2004, 33, 228–234. [Google Scholar] [CrossRef]
- Beldring, S.; Engen-Skaugen, T.; Førland, E.J.; Roald, L.A. Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 439–450. [Google Scholar] [CrossRef]
- Chaminé, H.I.; Barbieri, M.; Kisi, O.; Chen, M.; Merkel, B.J. (Eds.) Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018; Advances in Science, Technology & Innovation; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-01571-8. [Google Scholar]
- Hattermann, F.F.; Krysanova, V.; Gosling, S.N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; et al. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Clim. Chang. 2017, 141, 561–576. [Google Scholar] [CrossRef]
- Olsson, T.; Jakkila, J.; Veijalainen, N.; Backman, L.; Kaurola, J.; Vehviläinen, B. Impacts of climate change on temperature, precipitation and hydrology in Finland—Studies using bias corrected Regional Climate Model data. Hydrol. Earth Syst. Sci. Katlenburg Lindau 2015, 19, 3217–3238. [Google Scholar] [CrossRef]
- Majone, B.; Villa, F.; Deidda, R.; Bellin, A. Impact of climate change andwater use policies on hydropower potential in the south-eastern Alpine region. Sci. Total Environ. 2016, 543, 965–980. [Google Scholar] [CrossRef]
- Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for climate change impacts on hydropower in the Far North. Hydrol. Earth Syst. Sci. Katlenburg Lindau 2017, 21, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Bergström, S.; Carlsson, B.; Gardelin, M.; Lindström, G.; Pettersson, A.; Rummukainen, M. Climate change impacts on runoff in Sweden—Assessments by global climate models, dynamical downscaling and hydrological modelling. Clim. Res. 2001, 16, 101–112. [Google Scholar] [CrossRef]
- Chernet, H.H.; Alfredsen, K.; Killingtveit, Å. The impacts of climate change on a Norwegian high-head hydropower system. J. Water Clim. Chang. 2013, 4, 17–37. [Google Scholar] [CrossRef]
- Graham, L.P.; Andreasson, J.; Carlsson, B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—A case study on the Lule River basin. Clim. Chang. 2007, 81, 293–307. [Google Scholar] [CrossRef]
- Wright, R.F.; Couture, R.-M.; Christiansen, A.B.; Guerrero, J.-L.; Kaste, Ø.; Barlaup, B.T. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway. Sci. Total Environ. 2017, 574, 128–138. [Google Scholar] [CrossRef]
- Ettema, R. Review of alluvial-channel responses to river ice. J. Cold Reg. Eng. 2002, 16, 191. [Google Scholar] [CrossRef]
- Kämäri, M.; Alho, P.; Veijalainen, N.; Aaltonen, J.; Huokuna, M.; Lotsari, E. River ice cover influence on sediment transportation at present and under projected hydroclimatic conditions. Hydrol. Process. 2015, 29, 4738–4755. [Google Scholar] [CrossRef]
- Julian, J.P.; Torres, R. Hydraulic erosion of cohesive riverbanks. Geomorphology 2006, 76, 193–206. [Google Scholar] [CrossRef]
- Lotsari, E.; Wainwright, D.; Corner, G.D.; Alho, P.; Käyhkö, J. Surveyed and modelled one-year morphodynamics in the braided lower Tana River. Hydrol. Process. 2014, 28, 2685–2716. [Google Scholar] [CrossRef]
- Wolman, M.G. Factors Influencing Erosion of a Cohesive River Bank. Am. J. Sci. 1959, 257, 204–216. [Google Scholar] [CrossRef]
- Dubrovin, T.; Isid, D.; Kumpumäki, M.; Mustajoki, J.; Jakkila, J.; Marttunen, M. Kehittämissuositukset Pirkanmaan Keskeisten Järvien Säännöstelyille. ELY-keskuksen Raportteja 2017, 26, 110. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Graham, L.P. Climate change effects on river flow to the Baltic Sea. A J. Hum. Environ. 2004, 33, 235–241. [Google Scholar] [CrossRef]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, J. Long-term Changes and Variability of the Winter and Spring Season Hydrological Regime in Finland; University of Helsinki: Helsinki, Finland, 2019; ISBN 978-951-51-2800-3. [Google Scholar]
- Ruosteenoja, K.; Jylhä, K.; Kämäräinen, M. Climate Projections for Finland Under the RCP Forcing Scenarios. Geophysica 2016, 51, 17–50. [Google Scholar]
- IPCC Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 1 August 2019).
- Lawrence, D.; Haddeland, I. Uncertainty in hydrological modelling of climate change impacts in four Norwegian catchments. Hydrol. Res. 2011, 42, 457–471. [Google Scholar] [CrossRef]
- Lotsari, E.; Aaltonen, J.; Veijalainen, N.; Alho, P.; Käyhkö, J. Future fluvial erosion and sedimentation potential of cohesive sediments in a coastal river reach of SW Finland. Hydrol. Process. 2014, 28, 6016–6037. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–30. ISBN 978-1-107-66182-0. [Google Scholar]
- Helcom Baltic Compass—Helcom. Available online: http://www.helcom.fi/helcom-at-work/projects/completed-projects/baltic-compass (accessed on 11 September 2018).
- Johansson, M.M.; Pellikka, H.; Kahma, K.K.; Ruosteenoja, K. Global sea level rise scenarios adapted to the Finnish coast. J. Mar. Syst. 2014, 129, 35–46. [Google Scholar] [CrossRef]
- Pellikka, H.; Leijala, U.; Johansson, M.M.; Leinonen, K.; Kahma, K.K. Future probabilities of coastal floods in Finland. Cont. Shelf Res. 2018, 157, 32–42. [Google Scholar] [CrossRef]
- Koskinen, M. Porin Tulvat—Halittuja Riskejä; Suomen Ympäristö: Kokemäki, Finland, 2006; p. 84. [Google Scholar]
- Vainio, M. Flood Protection Action Plan for Kokemäenjoki Watershed; Alueelliset ympäristöjulkaisut: Tampere, Finland, 1999; p. 83. [Google Scholar]
- Kersalo, J.; Pirinen, P. Suomen Maakuntien Ilmasto; Reports; Finnish Meteorological Institute: Helsinki, Finland, 2009; p. 192. [Google Scholar]
- Pirinen, P.; Simola, H.; Aalto, J.; Kaukoranta, J.-P.; Karlsson, P.; Ruuhela, R. Tilastpja Suomen Ilmastosta 1981–2010; Ilmatieteenlaitoksen Raportteja; Ilmatieteen Laitos: Helsinki, Finland, 2012; ISBN 978-951-697-765-5. [Google Scholar]
- Alho, P.; Sane, M.; Huokuna, M.; Käyhkö, J.; Lotsari, E.; Lehtiö, L. Mapping of Flood Risks Petteri Alho, Mikko Sane, Mikko Huokuna, Jukka Käyhkö, Eliisa Lotsari Ja Laura Lehtiö; Ympäristöhallinnon ohjeita; Finnish Environmental Institute: Helsinki, Finland, 2008. [Google Scholar]
- Aulio, K. Kokemäenjoki River Delta, Western Finland—Natural Treasury in an Exceptionally Rapidly Changing Aquatic Environment. Int. Lett. Nat. Sci. 2015, 32, 36–53. [Google Scholar]
- Finnish Environment Institute. Available online: https://www.syke.fi/en-US/Open_information/Open_web_services/Environmental_data_API (accessed on 13 July 2019).
- VARELY. Kokemäenjoen Vesistöalueen Tulvariskien Hallintasuunnitelma Vuosille 2016–2021; Varsinais-Suomen ELY-keskus Raportteja; Centre for Economic Development, Transport and the Environment of the Southwest Finland: Turku, Finland, 2015; p. 178. [Google Scholar]
- Dubrovin, T.; Jakkila, J.; Aaltonen, J.; Kumpumäki, M.; Vehviläinen, B. Kokemäenjoen Vesistöalueen Padotus- Ja Juoksutusselvitys. 2017. Available online: https://docplayer.fi/57099716-Suomen-ymparistokeskus.html (accessed on 26 October 2018).
- Vehviläinen, B.; Huttunen, M. Hydrological Forecasting and Real Time Monitoring in Finland: The Watershed Simulation and Forecasting System (WSFS); Suomen Ympäristökeskus: Helsinki, Finland, 2001. [Google Scholar]
- Aaltonen, J.; Veijalainen, N.; Huokuna, M. The effect of climate chance on frazil ice jam formation in the Kokemäenjoki River. In Proceedings of the 20th IAHR International Symposium on Ice, Lahti, Finland, 14–18 June 2010. [Google Scholar]
- Prudhomme, C.; Jakob, D.; Svensson, C. Uncertainty and climate change impact on the flood regime of small UK catchments. J. Hydrol. 2003, 277, 1–23. [Google Scholar] [CrossRef]
- Veijalainen, N.; Jakkila, J.; Nurmi, T.; Vehviläinen, B.; Marttunen, M.; Aaltonen, J. Suomen Vesivarat Ja Ilmastonmuutos—Vaikutukset Ja Muutoksiin Sopeutuminen. WaterAdapt-Projektin Loppuraportti; Suomen ympäristökeskus: Helsinki, Finland, 2012; ISBN 978-952-11-4018-1. [Google Scholar]
- Van der Linden, P.; Mitchell, J.F.B. ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Veijalainen, N.; Jakkila, J.; Nurmi, T.; Vehviläinen, B.; Marttunen, M.; Aaltonen, J. Suomen Vesivarat Ja Ilmastonmuutos—Vaikutukset Ja Muutoksiin Sopeutuminen; Suomen Ympäristö; Finnish Environmental Institute: Helsinki, Finland, 2012; p. 138. [Google Scholar]
- Keto, A.; Tarvainen, A.; Marttunen, M.; Hellsten, S. Use of the water-level fluctuation analysis tool (Regcel) in hydrological status assessment of finnish lakes. In Ecological Effects of Water—Level Fluctuations in Lakes; Wantzen, K.M., Rothhaupt, K.-O., Mörtl, M., Cantonati, M., Tóth, L.G., Fischer, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 133–142. ISBN 978-1-4020-9191-9. [Google Scholar]
- Marttunen, M.; Nieminen, H.; Keto, A.; Suomalainen, M.; Tarvainen, A.; Moilanen, S.; Järvinen, E.A. Pirkanmaan Keskeisten Järvien Säännöstelyjen Kehittäminen. Yhteenveto ja Suositukset; Suomen ympäristö; Finnish Environmental Institute: Helsinki, Finland, 2004; p. 195. [Google Scholar]
- Son, T. RiverSurveyor S5/M9 System Manual, Firmware Version 3.50; AonTek, a Xylem Brand: San Diego, CA, USA, 2013. [Google Scholar]
- Leendertse, J.J. A Three-Dimensional Alternating Direction Implicit Model with Iterative Fourth Order Dissipative Non-linear Advection Terms; WD-3333-NETH; Rijkswaterstaat: The Hague, The Netherlands, 1987. [Google Scholar]
- Stelling, G.; Leendertse, J. Approximation of Convective Processes by Cyclic AOI Methods. In Estuarine and Coastal Modelling; Spaulding, M.L., Bedford, K., Blumberg, A., Cheng, R., Swanson, C., Eds.; American Society of Civil Engineers: New York, NY, USA, 1992; pp. 771–782. [Google Scholar]
- Kasvi, E.; Alho, P.; Lotsari, E.; Wang, Y.; Kukko, A.; Hyyppä, H.; Hyyppä, J. Two-dimensional and three-dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality. Hydrol. Process. 2015, 29, 1604–1629. [Google Scholar] [CrossRef]
- Deltares D-Flow Flexible Mesh, User Manual. Available online: https://oss.deltares.nl/web/delft3dfm/manuals (accessed on 1 September 2019).
- Bathurst, J.C.; Hey, R.D.; Thorne, C.R. Secondary flow and shear stress at river bends. J. Hydraul. Div. 1979, 105, 1277–1295. [Google Scholar]
- Shields, A. Anwendung Der Ähnlickeit Mechanik under Turbulenzforschung Auf Die Geschiebelerwegung. Mitt. Preuss Versuchanstalt Fur Wasserbau und Schiffbau. Ph.D. Thesis, Mitt. Preuss Versuchanstalt fur Wasserbau und Schiffbau, Berlin, Germany, 1936. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Grubler, A.; Riahi, K.; Roehrl, R.A.; Rogner, H.-H.; Victor, N. Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0-521-80493-6. [Google Scholar]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Maule, C.F.; van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef]
- Lotsari, E.; Thorndycraft, V.; Alho, P. Prospects and challenges of simulating river channel response to future climate change. Prog. Phys. Geogr. 2015, 39, 483–513. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Ramirez, J.; Fowler, H.J.; Glenis, V. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield. Hydrol. Earth Syst. Sci. 2012, 16, 4401–4416. [Google Scholar] [CrossRef] [Green Version]
Sub-Basin | Annual Water Level Fluctuation | Lake Area | Outlet | Power Plant | Average Outflow (m3/s) | Operator |
---|---|---|---|---|---|---|
Rauta-Kulovesi | 0.86 m | 66 km² | 2. | YES | 187 | UPM-Kymmene PLC |
Kyrösjärvi | 1.19 m | 96 km² | 3. | YES | 28 | Kyröskosken Voima JSC |
Pyhäjärvi | 0.97 m | 119 km² | 4. | YES | 142 | UPM-Kymmene PLC |
Näsijärvi | 1.13 m | 256 km² | 5. | YES | 73 | Tampereen sähkölaitos JSC |
Vanajavesi | 1.18 m | 160 km² | 6. | NO | 70 | Centre for economic development, transport and the environment |
Climate Scenario Abbreviation | RCM | GCM | Temperature Change (°C) | Precipitation Change (%) | Average Discharge (m3/s) | MHQ (m3/s) |
---|---|---|---|---|---|---|
Reference period | 235 | 626 | ||||
Average scenario | several (see below) | several (see below) | 2.3 | 8.2 | 242 | 678 |
HIRH-A | HIRHAM 5 | ARPEGE | 2.1 | −1.1 | 204 | 615 |
RCA-H | RCA4 | HadCM3Q0 | 1.6 | 11.0 | 266 | 689 |
RCA-E | RCA4 | Echam5 | 2.4 | 10.3 | 256 | 721 |
RCA-B | RCA4 | BCM | 1.9 | 8.3 | 248 | 660 |
Had-H | HadRMQ0 | HadCM3Q0 | 3.5 | 7.8 | 225 | 662 |
REMO-E | REMO | Echam5 | 2.4 | 7.9 | 242 | 681 |
HIRH-E | HIRHAM 5 | Echam5 | 2.3 | 13.5 | 271 | 731 |
Model | Q (m3/s) | WL (m) |
---|---|---|
R CURR n (i.e., Low discharge) | 141 | 0.046 |
R_CURR_MHQ normal | 626 | 1.09 |
R_CURR_MHQ max | 626 | 1.36 |
F_CURR_MHQ normal | 676 | 1.308 |
F_CURR_MHQ max | 676 | 1.735 |
F_ECO_MHQ | 649 | 1.25 |
F_REC_MHQ | 670 | 1.28 |
Entire area | error (m) |
Average error | 0.1 |
Average abs error | 0.29 |
Floodplain | error (m) |
Average error | 0.04 |
Average abs error | 0.09 |
Date | Q (m3/s) | WL Down | WL Calibration Point (Measured) | WL Calibration Point (Modeled) | Error |
---|---|---|---|---|---|
11 April 2010 | 541 | 0.53 | 0.93 | 0.88 | 0.05 |
12 April 2010 | 573 | 0.53 | 1.02 | 0.95 | 0.07 |
18 April 2010 | 448 | 0.43 | 0.77 | 0.73 | 0.04 |
21 April 2010 | 393 | 0.38 | 0.64 | 0.62 | 0.02 |
Model | Inundated Area (km2) | Mean Depth (m) | WL at Pori City Center (m) |
---|---|---|---|
R_CURR_N | 3.71 | 0.74 | 0.13 |
R_CURR_MHQ | 5.8 | 1.14 | 1.42 |
R_CURR_MHQ max | 6.89 | 1.27 | 1.60 |
F_CURR_MHQ | 6.7 | 1.25 | 1.59 |
F_CURR_MHQ max | 8.96 | 1.51 | 1.90 |
F_ECO_MHQ | 6.38 | 1.22 | 1.53 |
F_REC_MHQ | 6.53 | 1.24 | 1.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasvi, E.; Lotsari, E.; Kumpumäki, M.; Dubrovin, T.; Veijalainen, N. Effects of Climate Change and Flow Regulation on the Flow Characteristics of a Low-Relief River within Southern Boreal Climate Area. Water 2019, 11, 1827. https://doi.org/10.3390/w11091827
Kasvi E, Lotsari E, Kumpumäki M, Dubrovin T, Veijalainen N. Effects of Climate Change and Flow Regulation on the Flow Characteristics of a Low-Relief River within Southern Boreal Climate Area. Water. 2019; 11(9):1827. https://doi.org/10.3390/w11091827
Chicago/Turabian StyleKasvi, Elina, Eliisa Lotsari, Miia Kumpumäki, Tanja Dubrovin, and Noora Veijalainen. 2019. "Effects of Climate Change and Flow Regulation on the Flow Characteristics of a Low-Relief River within Southern Boreal Climate Area" Water 11, no. 9: 1827. https://doi.org/10.3390/w11091827
APA StyleKasvi, E., Lotsari, E., Kumpumäki, M., Dubrovin, T., & Veijalainen, N. (2019). Effects of Climate Change and Flow Regulation on the Flow Characteristics of a Low-Relief River within Southern Boreal Climate Area. Water, 11(9), 1827. https://doi.org/10.3390/w11091827