GLOF Risk Assessment Model in the Himalayas: A Case Study of a Hydropower Project in the Upper Arun River
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Data Collection
2.2. Remote Sensing
2.3. Formation of the Model
3. Results
3.1. The New Model
3.2. Determination of the Critical Lakes
3.3. Discharge Profiles and Outburst Probability of the Critical Lakes
4. Discussion
4.1. Climatic Correlation with GLOFs
4.2. Justification for the Assumed Depth of the Lakes
4.3. Analysis, Limitations, and Recommendations in Relation to the Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Nie, Y.; Liu, Q.; Wang, J.; Zhang, Y.; Sheng, Y.; Liu, S. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology 2018, 308, 91–106. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Mool, P. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol. 2009, 50, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Ives, D.J.; Shrestha, R.B.; Mool, P.K. Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment; ICIMOD: Kathmandu, Nepal, 2010. [Google Scholar]
- Wang, S.-J.; Zhang, T. Glacial lakes change and current status in the central Chinese Himalayas from 1990 to 2010. J. Appl. Remote. Sens. 2013, 7, 73459. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Cui, P.; Li, Y.; Yang, Z.; Qi, Y.-Q. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology 2007, 88, 298–311. [Google Scholar] [CrossRef]
- Wang, W.; Gao, Y.; Anacona, P.I.; Lei, Y.; Xiang, Y.; Zhang, G.; Li, S.; Lu, A. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas. Geomorphology 2018, 306, 292–305. [Google Scholar] [CrossRef]
- Xu, D.; Feng, Q. Dangerous glacial lakes in the Himalayas of Tibet and their bursting characteristics. J. Geogr. Sci. 1989, 3, 343–352. [Google Scholar]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Bajracharya, B.; Shrestha, A.B.; Rajbhandari, L. Glacial Lake Outburst Floods in the Sagarmatha Region. Mt. Res. Dev. 2007, 27, 336–344. [Google Scholar] [CrossRef]
- ICIMOD. Glacial Lakes and Glacial Lake Outburst Floods in Nepal; International Centre for Integrated Mountain Development: Lalitpur, Nepal, 2011. [Google Scholar]
- Osti, R.; Bhattarai, T.N.; Miyake, K. Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region. Nat. Hazards 2011, 58, 1209–1223. [Google Scholar] [CrossRef]
- Liu, J.-J.; Cheng, Z.-L.; Su, P.-C. The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quat. Int. 2014, 321, 78–87. [Google Scholar] [CrossRef]
- Gurung, D.R.; Khanal, N.R.; Bajracharya, S.R.; Tsering, K.; Joshi, S.; Tshering, P.; Chhetri, L.K.; Lotay, Y.; Penjor, T. Lemthang Tsho glacial Lake outburst flood (GLOF) in Bhutan: Cause and impact. Geoenviron. Disasters 2017, 4, 17. [Google Scholar] [CrossRef]
- Wang, W.; Yao, T.; Yang, X. Variations of glacial lakes and glaciers in the Boshula mountain range, southeast Tibet, from the 1970s to 2009. Ann. Glaciol. 2011, 52, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Climate Change Secretariat. Impacts, Vulnerabilities and Adaptation in Developing Countries; Climate Change Secretariat (UNFCCC): Geneva, Switzerland, 2007. [Google Scholar]
- Wang, X.; Liu, S.; Ding, Y.; Guo, W.; Jiang, Z.; Lin, J.; Han, Y. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Nat. Hazards Earth Syst. Sci. 2012, 12, 3109–3122. [Google Scholar] [CrossRef] [Green Version]
- Che, T.; Jin, R.; Li, X.; Wu, L.Z. Glacial lakes variation and the potentially dangerous glacial lakes in the Pumqu Basin of Tibet during the last two decades. J. Glaciol. Geocryol. 2004, 26, 397–402. [Google Scholar]
- Bolch, T.; Peters, J.; Yegorov, A.; Pradhan, B.; Buchroithner, M.; Blagoveshchensky, V. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 2011, 59, 1691–1714. [Google Scholar] [CrossRef] [Green Version]
- Gruber, F.E.; Mergili, M. Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS. Nat. Hazards Earth Syst. Sci. 2013, 13, 2779–2796. [Google Scholar] [CrossRef] [Green Version]
- Mergili, M.; Schneider, J.F. Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS. Nat. Hazards Earth Syst. Sci. 2011, 11, 1447–1462. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yao, T.; Gao, Y.; Yang, X.; Kattel, D.B. A First-order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau. Mt. Res. Dev. 2011, 31, 122–130. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V. Review Article: Lake and breach hazard assessment for moraine-dammed lakes: An example from the Cordillera Blanca (Peru). Nat. Hazards Earth Syst. Sci. 2013, 13, 1551–1565. [Google Scholar] [CrossRef]
- Westoby, M.; Glasser, N.; Brasington, J.; Hambrey, M.; Quincey, D.; Reynolds, J. Modelling outburst floods from moraine-dammed glacial lakes. Earth Sci. Rev. 2014, 134, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Worni, R.; Huggel, C.; Stoffel, M. Glacial lakes in the Indian Himalayas—From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci. Total Environ. 2013, 468, S71–S84. [Google Scholar] [CrossRef] [PubMed]
- Emmer, A.; Cochachin, A. The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas. AUC Geogr. 2013, 48, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Liu, Q.; Liu, S. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010. PLoS ONE 2013, 8, 83973. [Google Scholar] [CrossRef] [PubMed]
- Raup, B.H.; Cogley, G.; Zemp, M.; Glaus, L. Recent Advances in the GLIMS Glacier Database. In AGU Fall Meeting Abstracts, Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016; American Geophysical Union: Washington, DC, USA, 2016. [Google Scholar]
- Bajracharya, S. GLIMS Glacier Database: Boulder; Colorado, National Snow and Ice Data Center/World Data Center for Glaciology: Boulder, CO, USA, 2008. [Google Scholar]
- Xu, D.M.; Feng, Q. Dangerous glacial lake and outburst features in Xizang Himalayas. Acta Geogr. Sin. 1989, 44, 343–352. [Google Scholar]
- Vuichard, D.; Zimmermann, M. The 1985 Catastrophic Drainage of a Moraine-Dammed Lake, Khumbu Himal, Nepal: Cause and Consequences. Mt. Res. Dev. 1987, 7, 91. [Google Scholar] [CrossRef]
- Osti, R.; Egashira, S. Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal. Hydrol. Process. Int. J. 2009, 23, 2943–2955. [Google Scholar] [CrossRef]
- Dwivedi, S.K. The Tam Pokhari glacier lake outburst flood of 3 September 1998. J. Nepal Geol. Soc. 2000, 22, 539–546. [Google Scholar]
- Mool, P.K.; Wangda, D.; Bajracharya, S.R.; Joshi, S.P.; Kunzang, K.; Gurung, D.R. Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods: Monitoring and Early Warning Systems in the Hindu Kush-Himalayan Region, Nepal; ICIMOD: Kathmandu, Nepal, 2001. [Google Scholar]
- Popov, N. Assessment of glacial debris flow hazard in the north Tien-Shan. In Proceedings of the Soviet-China-Japan Symposium and Field Workshop on Natural Disasters; Alma-ata: Shanghai, China; Dushanbe and Kazselezashchita: Lanzhou, China; USSR: Urumgi, China, 1991; pp. 384–391. [Google Scholar]
- Evans, S.G. The maximum discharge of outburst floods caused by the breaching of man-made and natural dams. Can. Geotech. J. 1986, 23, 385–387. [Google Scholar] [CrossRef]
- O’Connor, J.E.; Walder, J.S. Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams. Water Resour. Res. 1997, 33, 2337–2348. [Google Scholar]
- Haeberli, W.; Teysseire, P.; Huggel, C.; Kääb, A.; Paul, F. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. 2002, 39, 316–330. [Google Scholar]
- Fan, X.; Tang, C.X.; Van Westen, C.J.; Alkema, D. Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake. Nat. Hazards Earth Syst. Sci. 2012, 12, 3031–3044. [Google Scholar] [CrossRef] [Green Version]
- Veh, G.; Korup, O.; von Specht, S.; Roessner, S.; Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Chang. 2019, 9, 379–383. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, Y.; Gao, Y.; Lu, A.; Yao, T. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol. Process. An Int. J. 2015, 29, 859–874. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Mool, P.K.; Shrestha, B.R. Impact of Climate Change on Himalayan Glaciers and Glacial Lakes: Case Studies on GLOF and Associated Hazards in Nepal and Bhutan; International Centre for Integrated Mountain Development (ICIMOD): Lalitpur, Nepal, 2007. [Google Scholar]
No. | Name | Date | Volume V (× 106 m3) | Affected Length L (km) | Reference |
---|---|---|---|---|---|
1 | Cirenmacuo | 11 July 1981 | 18.9 | 53 | [29] |
2 | Jialongco | 23 May 2002 | 3.9 | 46 | [29] |
3 | Taaco | 28 August 1935 | 6.3 | 30 | [29] |
4 | Qiongbixiamacuo | 10 July 1940 | 12.4 | 44 | [29] |
5 | Sangwang Lake | 16 July 1954 | 300 | 200 | [29] |
6 | Longdacuo | 25 August 1964 | 10.8 | 28 | [29] |
7 | Gelhaipuco | 21 September 1964 | 23.4 | 43 | [29] |
8 | Ayaco | 18 August 1970 | 90 | 42 | [29] |
9 | Dig Tsho | 4 August 1985 | 8 | 42 | [30] |
10 | Tam Pokhari | 3 September 1988 | 17.7 | 66 | [31,32,33] |
11 | Luggye Tsho | 7 October 1994 | 48 | 84 | [8] |
No. | Location | Lake Area (km2) | Volume (106 m3) | Ld (km) | Lc (km) | Lp (km) | Lc/Lp | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitude ( ) | Latitude ( ) | 1990 | 1995 | 2000 | 2005 | 2011 | 2017 | ||||||
1 | 86.305 | 28.374 | 3.641 | 3.727 | 3.727 | 3.692 | 3.762 | 3.867 | 212.685 | 232.190 | 169.810 | 248.370 | 0.680 |
2 | 86.379 | 28.392 | 0.327 | 0.410 | 0.613 | 0.750 | 0.903 | 1.093 | 60.115 | 227.220 | 90.470 | 243.400 | 0.370 |
3 | 86.415 | 28.393 | 0.177 | 0.177 | 0.188 | 0.188 | 0.181 | 0.181 | 9.955 | 226.140 | 64.390 | 242.320 | 0.270 |
4 | 86.494 | 28.349 | 0.294 | 0.294 | 0.294 | 0.294 | 0.294 | 0.294 | 16.170 | 222.570 | 67.620 | 238.750 | 0.280 |
5 | 86.582 | 28.199 | 1.330 | 1.330 | 1.330 | 1.330 | 1.287 | 1.274 | 70.070 | 183.600 | 95.650 | 199.780 | 0.480 |
6 | 86.629 | 28.207 | 0.268 | 0.268 | 0.268 | 0.268 | 0.268 | 0.268 | 14.740 | 185.890 | 66.870 | 202.070 | 0.330 |
7 | 86.863 | 28.111 | 0.015 | 0.098 | 0.098 | 0.098 | 0.312 | 0.388 | 21.340 | 154.050 | 70.310 | 170.230 | 0.410 |
8 | 87.028 | 28.008 | 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 5.665 | 68.360 | 62.160 | 84.540 | 0.740 |
9 | 87.047 | 28.068 | 0.543 | 0.574 | 0.574 | 0.630 | 0.707 | 0.745 | 40.975 | 86.570 | 80.520 | 102.750 | 0.780 |
10 | 87.051 | 28.206 | 0.626 | 0.626 | 0.573 | 0.573 | 0.573 | 0.573 | 31.515 | 89.910 | 75.600 | 106.090 | 0.710 |
11 | 87.082 | 27.844 | 0.294 | 0.294 | 0.294 | 0.325 | 0.340 | 0.345 | 18.975 | 39.570 | 69.080 | 39.570 | 1.750 |
12 | 87.082 | 28.130 | 0.177 | 0.177 | 0.177 | 0.177 | 0.177 | 0.177 | 9.735 | 85.520 | 64.270 | 101.700 | 0.630 |
13 | 87.101 | 28.208 | 0.937 | 0.937 | 0.937 | 0.937 | 0.937 | 0.937 | 51.535 | 84.230 | 86.010 | 100.410 | 0.860 |
14 | 87.105 | 28.143 | 0.146 | 0.146 | 0.146 | 0.146 | 0.146 | 0.146 | 8.030 | 82.330 | 63.390 | 98.510 | 0.640 |
15 | 87.112 | 28.143 | 0.217 | 0.217 | 0.217 | 0.217 | 0.217 | 0.217 | 11.935 | 81.610 | 65.420 | 97.790 | 0.670 |
16 | 87.134 | 28.069 | 0.201 | 0.201 | 0.201 | 0.201 | 0.201 | 0.201 | 11.055 | 78.140 | 64.960 | 94.320 | 0.690 |
17 | 87.428 | 28.138 | 0.211 | 0.211 | 0.211 | 0.211 | 0.211 | 0.211 | 11.605 | 65.420 | 65.240 | 81.600 | 0.800 |
18 | 87.443 | 28.161 | 0.222 | 0.222 | 0.243 | 0.214 | 0.239 | 0.224 | 12.320 | 73.010 | 65.620 | 89.190 | 0.740 |
19 | 87.468 | 28.149 | 0.255 | 0.255 | 0.255 | 0.255 | 0.255 | 0.255 | 14.025 | 76.260 | 66.500 | 92.440 | 0.720 |
20 | 87.472 | 28.213 | 1.025 | 1.025 | 1.137 | 1.319 | 1.319 | 1.319 | 72.545 | 83.280 | 96.930 | 99.460 | 0.970 |
21 | 87.480 | 28.173 | 0.208 | 0.208 | 0.208 | 0.208 | 0.208 | 0.208 | 11.440 | 77.290 | 65.160 | 93.470 | 0.700 |
22 | 87.502 | 28.237 | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 | 9.130 | 87.290 | 63.960 | 103.470 | 0.620 |
23 | 87.563 | 28.179 | 0.691 | 0.803 | 0.840 | 0.885 | 0.989 | 1.013 | 55.715 | 94.610 | 88.180 | 110.790 | 0.800 |
24 | 87.578 | 28.228 | 0.190 | 0.190 | 0.190 | 0.190 | 0.190 | 0.190 | 10.450 | 106.750 | 64.640 | 122.930 | 0.530 |
25 | 87.578 | 28.164 | 0.171 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 9.900 | 76.350 | 64.360 | 92.530 | 0.700 |
26 | 87.584 | 28.107 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 6.435 | 71.840 | 62.560 | 88.020 | 0.710 |
27 | 87.587 | 28.116 | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | 5.775 | 72.190 | 62.210 | 88.370 | 0.700 |
28 | 87.591 | 28.230 | 0.719 | 0.786 | 0.786 | 0.768 | 0.786 | 0.745 | 40.975 | 107.770 | 80.520 | 123.950 | 0.650 |
29 | 87.599 | 28.131 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 6.710 | 80.030 | 62.700 | 96.210 | 0.650 |
30 | 87.612 | 28.155 | 0.127 | 0.127 | 0.127 | 0.127 | 0.127 | 0.127 | 6.985 | 80.230 | 62.840 | 96.410 | 0.650 |
31 | 87.615 | 28.118 | 0.241 | 0.241 | 0.241 | 0.241 | 0.241 | 0.241 | 13.255 | 77.860 | 66.100 | 94.040 | 0.700 |
32 | 87.623 | 28.168 | 0.200 | 0.200 | 0.200 | 0.200 | 0.200 | 0.200 | 11.000 | 84.210 | 64.930 | 100.390 | 0.650 |
33 | 87.637 | 28.093 | 0.377 | 0.377 | 0.525 | 0.564 | 0.588 | 0.588 | 32.340 | 72.820 | 76.030 | 89.000 | 0.850 |
34 | 87.641 | 28.195 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | 27.335 | 94.830 | 73.420 | 111.010 | 0.660 |
35 | 87.655 | 28.114 | 1.289 | 1.268 | 1.268 | 1.268 | 1.268 | 1.268 | 69.740 | 73.330 | 95.470 | 89.510 | 1.070 |
36 | 87.772 | 27.926 | 0.636 | 0.767 | 0.767 | 0.794 | 0.857 | 0.857 | 47.135 | 60.830 | 83.720 | 77.010 | 1.090 |
37 | 87.815 | 27.964 | 0.175 | 0.230 | 0.230 | 0.342 | 0.342 | 0.342 | 18.810 | 71.180 | 68.990 | 87.360 | 0.790 |
38 | 87.908 | 27.952 | 0.663 | 0.663 | 0.663 | 0.632 | 0.632 | 0.632 | 34.760 | 82.190 | 77.290 | 98.370 | 0.790 |
39 | 87.931 | 27.950 | 0.597 | 0.597 | 0.679 | 0.745 | 0.745 | 0.745 | 40.975 | 83.730 | 80.520 | 99.910 | 0.810 |
40 | 88.003 | 27.930 | 0.853 | 0.890 | 0.930 | 0.930 | 0.930 | 0.930 | 51.150 | 97.710 | 85.810 | 113.890 | 0.750 |
41 | 88.066 | 27.934 | 0.728 | 0.728 | 0.728 | 0.728 | 0.705 | 0.728 | 40.040 | 102.920 | 80.030 | 119.100 | 0.670 |
42 | 88.076 | 27.946 | 0.593 | 0.748 | 0.865 | 1.108 | 1.292 | 1.516 | 83.380 | 101.380 | 102.570 | 117.560 | 0.870 |
43 | 88.242 | 28.005 | 0.264 | 0.292 | 0.311 | 0.323 | 0.328 | 0.336 | 18.480 | 171.200 | 68.820 | 187.380 | 0.370 |
44 | 88.259 | 28.009 | 0.351 | 0.389 | 0.434 | 0.514 | 0.491 | 0.514 | 28.270 | 170.540 | 73.910 | 186.720 | 0.400 |
45 | 88.288 | 28.018 | 0.390 | 0.390 | 0.390 | 0.390 | 0.390 | 0.390 | 21.450 | 172.140 | 70.360 | 188.320 | 0.370 |
46 | 88.320 | 28.006 | 0.331 | 0.331 | 0.331 | 0.331 | 0.331 | 0.331 | 18.205 | 174.880 | 68.680 | 191.060 | 0.360 |
47 | 88.355 | 28.023 | 0.479 | 0.479 | 0.479 | 0.479 | 0.479 | 0.479 | 26.345 | 182.100 | 72.910 | 198.280 | 0.370 |
48 | 88.427 | 28.054 | 0.857 | 0.857 | 0.857 | 0.857 | 0.857 | 0.857 | 47.135 | 184.160 | 83.720 | 200.340 | 0.420 |
49 | 87.091 | 27.798 | 0.504 | 0.649 | 0.904 | 1.003 | 1.230 | 1.480 | 81.400 | 34.050 | 101.540 | 34.050 | 2.980 |
Formula | Source | Note |
---|---|---|
[34] | Qm is the peak discharge at the dam site, and Vw is the volume of water. | |
[35] | ||
[36] | ||
[37] |
Glacial Lake No. | Discharge at Site if Drainage = | Dam Type | Potential for Lake Impacts | Dam Geometry | Freeboard | Outburst Probability | ||
---|---|---|---|---|---|---|---|---|
100% | 75% | 50% | ||||||
20 | 4632 | 3542 | 2422 | Landslide dam | Debris flow | Stable | Medium freeboard | Medium |
35 | 4929 | 3772 | 2583 | No dam | Debris flow | - | Low freeboard | Medium |
36 | 3951 | 3025 | 2073 | Moraine dam | Ice avalanches/rock fall | Unstable | Low freeboard | High |
49 | 9866* | 7586* | 5238* | Moraine dam | Ice avalanches/rock fall | Unstable | Low freeboard | High |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Washakh, R.M.A.; Chen, N.; Wang, T.; Almas, S.; Ahmad, S.R.; Rahman, M. GLOF Risk Assessment Model in the Himalayas: A Case Study of a Hydropower Project in the Upper Arun River. Water 2019, 11, 1839. https://doi.org/10.3390/w11091839
Washakh RMA, Chen N, Wang T, Almas S, Ahmad SR, Rahman M. GLOF Risk Assessment Model in the Himalayas: A Case Study of a Hydropower Project in the Upper Arun River. Water. 2019; 11(9):1839. https://doi.org/10.3390/w11091839
Chicago/Turabian StyleWashakh, Rana Muhammad Ali, Ningsheng Chen, Tao Wang, Sundas Almas, Sajid Rashid Ahmad, and Mahfuzur Rahman. 2019. "GLOF Risk Assessment Model in the Himalayas: A Case Study of a Hydropower Project in the Upper Arun River" Water 11, no. 9: 1839. https://doi.org/10.3390/w11091839
APA StyleWashakh, R. M. A., Chen, N., Wang, T., Almas, S., Ahmad, S. R., & Rahman, M. (2019). GLOF Risk Assessment Model in the Himalayas: A Case Study of a Hydropower Project in the Upper Arun River. Water, 11(9), 1839. https://doi.org/10.3390/w11091839