Analysis of Risk Assessment in a Municipal Wastewater Treatment Plant Located in Upper Silesia
Abstract
:1. Introduction
2. Theory of Risk Management
2.1. Risk Identification
2.2. Risk Estimation
- Quantitative methods consist of two defining parameters: frequency of occurrence and value of losses; the results are objective and comparable.
- Qualitative methods include a subjective assessment based on knowledge and experience; the results are presented in a descriptive form.
- Mixed methods are the most commonly used type of strategy, involving the simultaneous use of quantitative and qualitative methods.
2.3. Risk Admissibility
- Acceptable risk—an event irrelevant to the general operation of the facility as a “daily risk”; it does not require special security measures.
- Tolerable risk—medium risk, requires intervention, provided that the cost of reducing the risk is reasonable for the damage caused.
- Unacceptable risk—high risk, means an immediate threat to the environment and people and requires immediate steps to limit it.
3. Obtained Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iwanejko, R. Analysis of errors from reliability measures estimation methods for municipal systems on example of water supply. Tech. Trans. Environ. Eng. 2009, 11, 21–38. [Google Scholar]
- Benedetti, L.; Baets BDe Nopens, I.; Vanrolleghem, P.A. Multi-criteria analysis of wastewater treatment plant design and control scenarios under uncertainty. Environ. Model. Softw. 2010, 25, 616–621. [Google Scholar] [CrossRef]
- Muralikrishna, I.V.; Manickam, V. (Eds.) Environmental Risk Assessment. In Environmental Management; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 135–152. [Google Scholar]
- Bixio, D.; Parmentier, G.; Rousseau, D.; Verdonck, F.; Meirlaen, J.; Vanrolleghem, P.A.; Thoeye, C.A. Quantitative risk analysis tool for design/simulation of wastewater treatment plants. Water Sci. Technol. 2002, 46, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, L.; Bixio, D.; Vanrolleghem, P.A. Assessment of WWTP design and upgrade options: Balancing costs and risks of standards’ exceedance. Water Sci. Technol. 2006, 54, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, D.; Verdonck, F.; Moerman, O.; Carrette, R.; Thoeye, C.; Meirlaen, J.; Vanrolleghem, P.A. Development of a risk assessment based technique for design/retrofitting of WWTPs. Water Sci. Technol. 2001, 43, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Soller, J.; Sakaji, R.; Olivieri, A. A methodology to evaluate water and wastewater treatment plant reliability. Water Sci. Technol. 2001, 43, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Gillot, S.; Clercq BDe Defour, D.; Simoens, F.; Gernaey, K.; Vanrolleghem, P.A. Optimization of Wastewater Treatment Plant Design and Operation Using Simulation and Cost Analysis. Available online: https://www.researchgate.net/publication/2304372_Optimization_Of_Wastewater_Treatment_Plant_Design_And_Operation_Using_Simulation_And_Cost_Analysis (accessed on 12 April 2019).
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Sci. Total Environ. 2014, 466, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Lindberga, R.H.; Björklund, K.; Rendahl, P.; Johansson, M.I.; Tysklind, M.; Andersson, B.A.V. Environmental risk assessment of antibiotics in the Swedish environment with emphasis on sewage treatment plants. Water Res. 2007, 41, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Alcock, R.E.; Sweetman, A.; Jones, K.C. Assessment of organic contanhnant fate in waste water treatment plants I: Selected compounds and physicochemical properties. Chemosphere 1999, 38, 2247–2262. [Google Scholar] [CrossRef]
- Reiss, R.; Mackay, N.; Habig, C.; Griffin, J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 2009, 21, 2483–2492. [Google Scholar] [CrossRef]
- Zhang, K.; Achari, G.; Sadiq, R.; Langford, C.H.; Dore, M.H. An integrated performance assessment framework for water treatment plants. Water Res. 2012, 46, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Sangowski, T. Ubezpieczenia Gospodarcze; POLTEXT: Warszawa, Poland, 1998; p. 44. [Google Scholar]
- Jajuga, K. (Ed.) Teoretyczne podstawy zarzadzania ryzykiem. In Zarządzanie Ryzykiem; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2009; p. 15. [Google Scholar]
- Iwanejko, R.; Rybicki, S.M. Risk management for sewage treatment plants. Part I: Does risk management for sewage treatment plants make sense? Gaz Woda I Tech. Sanit. 2008, 2, 10–13. [Google Scholar]
- Kulińska, E. Metods for risk analisys in logistics processes. Logistyka 2011, 2, 385–409. [Google Scholar]
- Kasap, D.; Kaymak, M. Risk Identification. Step of the Project Risk Management. In Proceedings of the PICMET ’07—2007 Portland International Conference on Management of Engineering & Technology, Portland, OR, USA, 5–9 August 2007. [Google Scholar]
- Zawarska, J. Identyfikacja i pomiar ryzyka w procesie zarządzania ryzykiem podmiotów gospodarczych. Zarządzanie I Finans. 2012, 1, 65–75. [Google Scholar]
- Tchankova, L. Risk identification–basic stage in risk management. Environ. Manag. Health 2002, 13, 290–297. [Google Scholar] [CrossRef]
- Rak, J. Risk estimates for water supply systems. Ochrona Środowiska 2003, 2, 33–36. [Google Scholar]
- Łuczak, J. Risk assesment methods–ISO/IEC 27001 information security managament system’s key element. Sci. J. Marit. Univ. Szczec. 2009, 91, 63–70. [Google Scholar]
- Liwacz, A. Zarzadzanie Ryzykiem. Poradnik Samorządowy 2004, 12, 28. [Google Scholar]
- Rak, J. Basics of the safety of water supply systems. Monogr. Kom. Inżyierii Środowiska PAN 2005, 28, 1–215. [Google Scholar]
- Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych (Dz.U. 2019 poz. 1311).
- Łój-Pilch, M.; Zakrzewska, A.; Zielewicz, E. Risk Assessment Analysis in a Municipal Wastewater Treatment Plant. In Proceedings of the ISMO 2019–Innovations–Sustainability–Modernity—Openness Conference (ISMO’19), Białystok, Poland, 22–23 May 2019. [Google Scholar]
- Łój-Pilch, M.; Zakrzewska, A.; Zielewicz, E. Risk assessment in municipal wastewater treatment plant. In Proceedings of the 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2019, Polanica Zdrój, Poland, 8–10 April 2019. [Google Scholar]
- Łój-Pilch, M.; Zakrzewska, A.; Zielewicz, E. Impact of human factors on threats in sewage treatment plants In Safety and Reliability–Safe Societies in a Changing World; Haugen, S., Vinnem, J.E., Barros, A., Kongsvik, T., Gulijk, C., Eds.; Taylor & Francis Group: London, UK, 2018; pp. 1933–1938. [Google Scholar]
Device | Event | Type of Risk * | Risk Identification [16] | Risk Assessment | ||||
---|---|---|---|---|---|---|---|---|
Factor ** | Effect | Action Taken/Proposed | Number of Losses(L) | Frequency of Appearance | ||||
(1/year) | (F) | |||||||
sifters | sifter scraper failure | Q | O | clogging of sifter | repair of scrapper | 1 | 0.67 | 1 |
grit chamber | large dump of greasy sewage | Q | E | clogging of grease chamber outflow | unclogging the outflow | 1 | 0.33 | 1 |
activated sludge chamber | emergence of filamentous bacteria | Q, OP | I | formation of scum layer | breaking the scum layer and actions aimed at stopping bacteria development | 2 | 13.67 | 3 |
secondary settling tank | auxiliary devices failure | Q, OP | O | minor disturbance in the settling tank operation | repair of auxiliary devices | 2 | 4.67 | 2 |
all devises of sewage treatment | electrical power outage | Q, OP, EC, Fi | E | no power for electrical powered devices | connection to emergency power supply | 4 | 0.33 | 1 |
Occuring Events: | Frequency of Appearance | |
---|---|---|
(1/year) | (F) | |
rarely | ≤4 or 5 | 0–1 |
often | 4 or 5–9 | 1–2 |
very often | ≥9 | 2–3 |
Type of Risk | Amount of Losses (L) |
---|---|
qualitative | 1 |
qualitative, operational | 2 |
qualitative, operational, financial | 3 |
qualitative, operational, ecological, financial | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łój-Pilch, M.; Zakrzewska, A. Analysis of Risk Assessment in a Municipal Wastewater Treatment Plant Located in Upper Silesia. Water 2020, 12, 23. https://doi.org/10.3390/w12010023
Łój-Pilch M, Zakrzewska A. Analysis of Risk Assessment in a Municipal Wastewater Treatment Plant Located in Upper Silesia. Water. 2020; 12(1):23. https://doi.org/10.3390/w12010023
Chicago/Turabian StyleŁój-Pilch, Magdalena, and Anita Zakrzewska. 2020. "Analysis of Risk Assessment in a Municipal Wastewater Treatment Plant Located in Upper Silesia" Water 12, no. 1: 23. https://doi.org/10.3390/w12010023
APA StyleŁój-Pilch, M., & Zakrzewska, A. (2020). Analysis of Risk Assessment in a Municipal Wastewater Treatment Plant Located in Upper Silesia. Water, 12(1), 23. https://doi.org/10.3390/w12010023