Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.2. Modeling Methods
2.2.1. Bias-Correction and Multi-Model Ensemble Method
2.2.2. SC-PDSI
2.2.3. Identification of Drought Using Cluster Algorithm and the SAD Method
3. Results
3.1. Performance of Climate Models
3.2. Spatial and Temporal Characteristics of Drought Events
3.2.1. Historical Period
3.2.2. Future Period
3.3. SAD Envelope Curve of Drought in China
3.4. Distribution of Drought Centers
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, J.E.; Yoo, J.; Chung, G.H.; Kim, D.W. Hydrologic risk assessment of future extreme drought in South Korea using bivariate. Water 2019, 11, 2052. [Google Scholar] [CrossRef] [Green Version]
- Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state of art review. Aims Environ. Sci. 2016, 3, 604–630. [Google Scholar] [CrossRef]
- Reddy, M.J.; Ganguli, P. Application of copulas for derivation of drought severity-duration-frequency curves. Hydrol. Process. 2012, 26, 1672–1685. [Google Scholar] [CrossRef]
- Wang, J.C.; Lin, H.; Huang, J.B.; Jiang, C.J.; Xie, Y.Y.; Zhou, M.Y. Variations of Drought Tendency, Frequency, and Characteristics and Their Responses to Climate Change under CMIP5 RCP Scenarios in Huai River Basin, China. Water 2019, 11, 2174. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.K.; Plattner, G.K.; Nauels, A. Climate change 2013: The physical science basis. An overview of the working group contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC). Comp. Geom. Theor. Appl. 2007, 18, 95–123. [Google Scholar]
- Li, X.Z.; Zhou, W.; Chen, Y.D. Assessment of regional drought trend and risk over China: A drought climate division perspective. J. Clim. 2015, 28, 7025–7037. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef] [Green Version]
- Varis, O.; Kajander, T.; Lemmelä, R. Climate and water: From climate models to water resources management and vice versa. Clim. Chang. 2004, 66, 321–344. [Google Scholar] [CrossRef]
- L’Hévéder, B.; Speich, S.; Ragueneau, O.; Gohin, F.; Bryère, P. Observed and projected sea surface temperature seasonal changes in the western English Channel from satellite data and CMIP5 multi-model ensemble. Int. J. Climatol. 2017, 37, 2831–2849. [Google Scholar] [CrossRef]
- Leng, G.Y.; Tang, Q.H.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 multi-model projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Miao, C.Y.; Duan, Q.Y.; Sun, Q.H. Evaluation and application of Bayesian multi-model estimation in temperature simulations. Prog. Phys. Geog. 2013, 37, 727–744. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Z.; Li, B.; Wang, D.; Li, Y. Combination of multiple data-driven models for long-term monthly runoff predictions based on Bayesian Model Averaging. Water Resour. Manag. 2019, 33, 3321–3338. [Google Scholar] [CrossRef]
- Liang, X.; Cheng, D.; Wu, Y.J.; Wang, L. Towards Improving the Efficiency of Bayesian Model Averaging Analysis for Flow in Porous Media via the Probabilistic Collocation Method. Water 2018, 10, 412. [Google Scholar]
- Liu, P.; Xu, Z.X.; Li, X.P. Projection of Climate Change Scenarios in Different Temperature Zones in the Eastern Monsoon Region, China. Water 2017, 9, 305. [Google Scholar] [CrossRef]
- Weiland, F.C.S.; Beek, L.P.H.V.; Weerts, A.H. Extracting information from an ensemble of GCMs to reliably assess future global runoff change. J. Hydrol. 2011, 412, 66–75. [Google Scholar]
- Tegegne, G.; Kim, Y.O.; Lee, J.K. Spatiotemporal Reliability Ensemble Averaging of Multimodel Simulations. Geophys. Res. Lett. 2019, 46, 12321–12330. [Google Scholar] [CrossRef]
- Jiang, M.K.; Felzer, B.S.; Sahagian, D. Predictability of precipitation over the conterminous U.S. based on the cmip5 multi-model ensemble. Sci. Rep. 2016, 6, 29962. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Webster, P.J.; Curry, J.A. Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett. 2012, 39, 10701. [Google Scholar] [CrossRef]
- Zhou, B.T.; Wen, Q.Z.H.; Xu, Y. Projected changes in temperature and precipitation extremes in China by the cmip5 multi-model ensembles. J. Clim. 2014, 27, 6591–6611. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B. A review of drought indices. Doss. Envir. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Dehghani, M.; Zargar, M. Probabilistic hydrological drought index forecasting based on meteorological drought index using Archimedean copulas. Hydrol. Res. 2019, 50, 1230–1250. [Google Scholar] [CrossRef]
- Yeh, H.-F. Using integrated meteorological and hydrological indices to assess drought characteristics in southern Taiwan. Hydrol. Res. 2019, 50, 901–914. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.-W.; Wang, Y.-X.; Feng, P.; Yang, R.-Z. Evolution properties between meteorological, agricultural and hydrological droughts and their related driving factors in the Luanhe River basin, China. Hydrol. Res. 2019, 50, 1096–1119. [Google Scholar] [CrossRef]
- Xia, J.; Yang, P.; Zhan, C.S.; Qiao, Y.F. Analysis of changes in drought and terrestrial water storage in the Tarim River Basin based on principal component analysis. Hydrol. Res. 2019, 50, 761–777. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. Paper proceedings at 8th Conference on Applied Climatology. Am. Meteorol. Soc. Anaheim Calif. 1993, 17–22. [Google Scholar]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.H.; Hu, T.T. Analysis on spatial and temporal patterns of drought based on standardized precipitation index in the Hedong area in Gansu province. J. Des. Resear. 2014, 34, 244–253. [Google Scholar]
- De Oliveira-Júnior, J.F.; de Gois, G.; de Bodas Terassi, P.M.; da Silva Junior, C.A.; Blanco, C.J.C.; Sobral, B.S.; Gasparini, K.A.C. Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro- Brazil. Atmos. Res. 2018, 212, 91–105. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Department of Commerce Weather Bureau: Washington, DC, USA, 1965.
- Chen, S.D.; Zhang, L.P.; Liu, X.G.; Guo, M.; She, D. The use of spei and tvdi to assess temporal-spatial variations in drought conditions in the middle and lower reaches of the yangtze river basin, China. Adv. Meteorol. 2018, 1–11. [Google Scholar] [CrossRef]
- Yu, H.Q.; Zhang, Q.; Xu, C.Y.; Du, J. Modified Palmer Drought Severity Index: Model improvement and application. Environ. Int. 2019, 130, 104951. [Google Scholar] [CrossRef] [PubMed]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal dynamics of global drought. Geophys. Res. Lett. 2017, 44, 2254–2263. [Google Scholar] [CrossRef] [Green Version]
- Andreadis, K.M.; Clark, E.A.; Wood, A.W. Twentieth-century drought in the conterminous united states. J. Hydrometeorol. 2005, 6, 985–1001. [Google Scholar] [CrossRef]
- Xiao, M.; Nijssen, B.; Lettenmaier, D.P. Drought in the Pacific Northwest, 1920–2013. J. Hydrometeorol. 2016, 17, 2391–2404. [Google Scholar] [CrossRef]
- Shao, D.; Chen, S.; Tan, X. Drought characteristics over China during 1980–2015. Int. J. CLimatol. 2018, 38, 3532–3545. [Google Scholar] [CrossRef]
- Sheffield, J.; Andreadis, K.M.; Wood, E.F. Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. J. Clim. 2009, 22, 1962–1981. [Google Scholar] [CrossRef]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil moisture drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Zhai, J.Q.; Huang, J.L.; Su, B.D. Intensity-area-duration analysis of droughts in China 1960–2013. Clim. Dynam. 2017, 48, 151–168. [Google Scholar] [CrossRef]
- Liu, H.; Tian, F.Q.; Tang, Q.H. Drought evaluation and reconstruction based on a hydrologic model and remote sensing. J. Tsinghua Univ. 2013, 53, 613–617. [Google Scholar]
- Fu, X.J.; Hao, Z.C.; Cao, Q. Study of Changes of Dry-and-Wet Climate Zone in China from 1961 to 2017. J. China Three Gorges Univ. (Nat. Sci.) 2019, 41, 21–26. [Google Scholar]
- Yang, X.; Yu, X.; Wang, Y.; Liu, Y.; Zhang, M.; Ren, L.; Yuan, F.; Jiang, S. Estimating the response of hydrological regimes to future projections of precipitation and temperature over the upper Yangtze River. Atmos. Res. 2019, 230, 104627. [Google Scholar] [CrossRef]
- Yang, X.; Wood, E.F.; Sheffield, J. Bias Correction of Historical and Future Simulations of Precipitation and Temperature for China from CMIP5 Models. J. Hydrometeorol. 2018, 19, 609–623. [Google Scholar] [CrossRef]
- Li, H.B.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from intergovernmental panel on climate change AR4 models using equidistant quantile matching. J. Geophys. Res. Atm. 2010, 115, D10. [Google Scholar] [CrossRef]
- Aloysius, N.R.; Sheffield, J.; Saiers, J.E. Evaluation of historical and future simulations of precipitation and temperature in Central Africa from CMIP5 climate models. J. Geophys. Res. Atmos. 2016, 12, 130–152. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H.B.; Wang, Y.J.; Su, B.D. Variation of Drought Characteristics and its Agricultural Exposure in North China Plain. Chin. J. Agrometeorol. 2016, 37, 587–599. [Google Scholar]
- Zhai, J.; Su, B.; Krysanova, V. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Clim. 2010, 23, 649–663. [Google Scholar] [CrossRef]
- Tian, F.X.; Dong, B.W.; Jon, R.; Rowan, S.; Simon, F.B. Projected near term changes in the East Asian summer monsoon and its uncertainty. Environ. Res. Lett. 2019, 14, 084038. [Google Scholar] [CrossRef] [Green Version]
- Reichler, T.; Kim, J. How well do coupled models simulate today’s climate? Bull. Am. Meteorol. Soc. 2008, 89, 303–311. [Google Scholar] [CrossRef]
- Phillips, T.J.; Gleckler, P.J. Evaluation of continental precipitation in 20th century climate simulations: The utility of multimodel statistics. Water Resour. Res. 2006, 42, W03202. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, B.; Cancelliere, A.; Rossi, G. Probabilistic forecasting of drought class transitions in Sicily (Italy) using standardized precipitation index and North Atlantic oscillation index. J. Hydrol. 2015, 526, 136–150. [Google Scholar] [CrossRef]
- Schubert, S.D.; Stewart, R.E.; Wang, H. Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Clim. 2016, 29, 3989–4019. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kumar, A. Assessing the impact of ENSO on drought in the US Southwest with NCEP climate model simulations. J. Hydrol. 2015, 526, 30–41. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, F.F.; Turner, A. Increasing autumn drought over southern China associated with enso regime shift. Geophys. Res. Lett. 2014, 41, 4020–4026. [Google Scholar] [CrossRef] [Green Version]
NO | Model Name | Country | Institute | Resolution (lat × lon) |
---|---|---|---|---|
1 | ACCESS1-0 | Australia | Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Bureau of Meteorology (BOM) | 1.25° × 1.875° |
2 | CCSM4 | Canada | National Center for Atmospheric Research | 0.9° × 1.25° |
3 | CNRM-CM5 | France | Centre National de Recherches Meteorologiques and Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique | 1.4° × 1.4° |
4 | HadGEM2-AO | United Kingdom/South Korea | Met Office Hadley Centre/National Institute for Medical Research | 1.25° × 1.875° |
5 | MIROC5 | Japan | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 1.4° × 1.4° |
6 | MPI-ESM-LR | Germany | Max Planck Institute for Meteorology | 1.865° × 1.875° |
7 | MRI-CGCM3 | Japan | Meteorological Research Institute | 1.12° × 1.125° |
8 | NorESM1-M | Norway | Norwegian Climate Centre | 1.9° × 2.5° |
9 | NorESM1-ME | Norway | Norwegian Climate Centre | 1.9° × 2.5° |
Durations (Months) | Spatial Extent (%) | Severity (0–1) | CI (Area × Average Severity) |
---|---|---|---|
1964–1974 (121) | 1964–1974 (47.07%, 09/1965) | 1962–1963(0.92, 04/1963) | 1964–1974 (29.97, 06/1966) |
1982–1991 (112) | 1982–1991 (42.40%, 09/1986) | 1963–1964 (0.89, 05/1963) | 1982–1991 (28.58, 08/1986) |
1976–1985 (103) | 1961–1964 (28.77%, 06/1963) | 1980–1980 (0.86, 03/1980) | 1961-1964 (20.13, 06/1963) |
1994–1998 (50) | 1994–1998 (25.33%, 09/1994) | 1980–1981 (0.84, 03/1980) | 1994–1998 (13.49, 09/1994) |
1974–1978 (45) | 1998–2000 (24.13%, 09/2000) | 1969–1970 (0.80, 12/1969) | 1991–1993 (13.17, 11/1992) |
1978–1981 (37) | 1974–1978 (21.97%, 07/1975) | 1961–1964 (0.78, 04/1963) | 1978–1981 (11.57, 08/1978) |
RCPs | Durations (Month) | Spatial Extent (%) | Severity (0–1) | CI (Area × Average Severity) |
---|---|---|---|---|
RCP4.5 | 2021–2042 (253) | 2021–2042 (68.99%, 08/2024) | 2021–2042 (0.86, 02/2026) | 2021–2042 (55.46, 08/2024) |
2055–2060 (66) | 2055–2060 (20.85%, 07/2057) | 2027–2027 (0.85, 06/2027) | 2048–2049 (10.34, 11/2048) | |
2043–2045 (27) | 2048–2049 (15.64%, 10/2048) | 2022–2023 (0.79, 12/2022) | 2055–2060 (7.80, 08/2057) | |
2050–2052 (21) | 2051–2052 (14.23%, 11/2051) | 2053–2053 (0.79, 06/2053) | 2051–2052 (5.33, 11/2051) | |
2048–2049 (18) | 2055–2056 (12.64%, 07/2055) | 2023–2023 (0.73, 11/2023) | 2054–2055 (5.21, 09/2054) | |
2034–2035 (16) | 2054-2055 (8.76%, 09/2054) | 2046–2046 (0.72, 08/2046) | 2046–2047 (5.18, 09/2046) | |
RCP8.5 | 2021–2041 (230) | 2021–2041 (72.58%, 08/2033) | 2021–2041 (0.91, 10/2025) | 2021–2041 (65.57, 10/2025) |
2051–2056 (61) | 2051–2056 (15.46%, 06/2053) | 2021–2022 (0.91, 01/2022) | 2051–2056 (7.67, 07/2054) | |
2041–2043 (25) | 2056–2057 (10.58%, 04/2057) | 2023–2024 (0.87, 11/2023) | 2041–2043 (7.08, 10/2042) | |
2039–2041 (22) | 2041–2043 (10.48%, 10/2042) | 2024–2024 (0.83, 08/2024) | 2056–2057 (5.44, 04/2057) | |
2045–2046 (18) | 2045–2046 (7.12%, 08/2045) | 2029–2030 (0.79, 01/2030) | 2039–2041 (4.34, 07/2040) | |
2056–2057 (15) | 2045–2046 (6.89%, 10/2045) | 2056–2057 (0.78, 09/2057) | 2023–2024 (3.78, 01/2024) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, L.; Wang, Y.; P. Singh, V.; Xu, C.-Y.; Ren, L.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F. Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method. Water 2020, 12, 230. https://doi.org/10.3390/w12010230
Yang X, Zhang L, Wang Y, P. Singh V, Xu C-Y, Ren L, Zhang M, Liu Y, Jiang S, Yuan F. Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method. Water. 2020; 12(1):230. https://doi.org/10.3390/w12010230
Chicago/Turabian StyleYang, Xiaoli, Linyan Zhang, Yuqian Wang, Vijay P. Singh, Chong-Yu Xu, Liliang Ren, Mengru Zhang, Yi Liu, Shanhu Jiang, and Fei Yuan. 2020. "Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method" Water 12, no. 1: 230. https://doi.org/10.3390/w12010230
APA StyleYang, X., Zhang, L., Wang, Y., P. Singh, V., Xu, C. -Y., Ren, L., Zhang, M., Liu, Y., Jiang, S., & Yuan, F. (2020). Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method. Water, 12(1), 230. https://doi.org/10.3390/w12010230