Factors Affecting Water Drainage Long-Time Series in the Salinized Low-Lying Coastal Area of Ravenna (Italy)
Abstract
:- We assess factors that may cause drainage increase in a low coastal plain;
- Land subsidence related seepage causes most of drainage increase;
- Climate and land use change have minor effects on increase of drainage;
- Increase in drainage exacerbates aquifer salinization in low-lying coastal areas.
1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Hydrogeological Setting
2.2. Data Acquisition and Elaboration
2.2.1. Drainage Data
2.2.2. Land Use Change
2.2.3. Climate Data and Climatic Extremes
- R10—Number of days in a year with intense rainfall ≥10 mm.
- R20—Number of days in a year with very intense rainfall ≥20 mm.
- Wet days WD—Number of days in a year with rainfall ≥1 mm.
- SDII—Daily precipitation intensity obtained by dividing the cumulative annual precipitation by WD in the year.
2.2.4. Subsidence Data
2.2.5. Seepage Calculation
2.2.6. Water Budget for the Quinto Basin
3. Results
3.1. Time Series Analysis
3.2. Land Use Change
3.3. Water Seepage
3.4. Water Budget
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antonellini, M.; Mollema, P.; Giambastiani, B.M.S.; Banzola, E.; Bishop, K.; Caruso, L.; Minchio, A.; Pellegrini, L.; Sabia, M.; Ulazzi, E.; et al. Salt Water Intrusion in the Coastal Aquifer of the Southern Po-Plain, Italy. Hydrogeol. J. 2008, 16, 1541–1556. [Google Scholar] [CrossRef]
- Ghiglieri, G.; Carletti, A.; Pittalis, D. Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). J. Hydrol. 2012, 432, 43–51. [Google Scholar] [CrossRef]
- Satriani, A.; Loperte, A.; Imbrenda, V.; Lapenna, V. Geoelectrical surveys for characterization of the coastal saltwater intrusion in Metapontum forest reserve (Southern Italy). Int. J. Geophy. 2012. [Google Scholar] [CrossRef] [Green Version]
- Barrocu, G.; Sciabica, M.G.; Muscas, L. Geographical information systems and modeling of saltwater intrusion in the Capoterra alluvial plain (Sardinia, Italy). In Coastal Aquifer Management: Monitoring, Modelling, and Case Studies; Cheng, A.H.-D., Ouazar, D., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2016; pp. 183–206. [Google Scholar]
- Mastrorillo, L.; Mazza, R.; Manca, F.; Tuccimei, P. Evidences of different salinization sources in the roman coastal aquifer (Central Italy). J. Coast.Conserv. 2016, 20, 423–441. [Google Scholar] [CrossRef]
- Colombani, N.; Giambastiani, B.M.S.; Mastrocicco, M. Impact of climate variability on the salinization of the coastal wetland-aquifer system of the Po Delta, Italy. J. Water Supply Res. Technol. AQUA 2017, 66, 430–441. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Pisciotta, A.; De Maio, M. Evaluation of groundwater salinization and pollution level on Favignana Island, Italy. Environ. Pollut. 2019, 249, 969–981. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Nicholls, R.J.; Oude Essink, G.H.P.; Minura, N.; Warrick, R.A. Coastal Zones (Chapter 7). In UNEP Handbook on Methods for Climate Change Impact Assessments and Adaptation Strategies; Feenstra, J.F., Burton, I., Smith, J.B., Tol, R.S.J., Eds.; CRC Press: Boca Raton, FL, USA, 1998; p. 464. [Google Scholar]
- Oude Essink, G.H.P.; van Baaren, E.S.; de Louw, P.G.B. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resour. Res. 2010, 46, W00F04. [Google Scholar] [CrossRef]
- Delsman, J.R.; Hu-a-ng, K.R.M.; Vos, P.C.; de Louw, P.G.B.; Oude Essink, G.H.P.; Stuyfzand, P.J.; Bierkens, M.F.P. Paleo-modeling of coastal saltwater intrusion during the Holocene: An application to the Netherlands. Hydrol. Earth Syst. Sc. 2014, 18, 3891–3905. [Google Scholar] [CrossRef] [Green Version]
- Hoekesema, R.J. Three stages in the history of land reclamation in The Netherlands. Irrig. Drain. 2007, 56, S113–S126. [Google Scholar] [CrossRef]
- Chen, K.P.; Jiao, J.J. Preliminary study on seawater intrusion and aquifer freshening near reclaimed coastal area of Shenzhen, China. Water Sci. Tech. Water Sup. 2007, 7, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.P.; Jiao, J.J. Impact of coastal land reclamation on ground water level and the sea water interface. Groundwater 2007, 45, 362–367. [Google Scholar]
- Hu, L.; Jiao, J.J. Modeling the influences of land reclamation on groundwater systems: A case study in Shekou peninsula, Shenzhen, China. Eng. Geol. 2010, 114, 144–153. [Google Scholar] [CrossRef]
- Giambastiani, B.M.S.; Antonellini, M.; Oude Essink, G.H.P.; Stuurman, R.J. Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): A numerical model. J. Hydrol. 2007, 340, 91–104. [Google Scholar] [CrossRef]
- Chang, S.W.; Clement, T.P.; Simpson, M.J.; Lee, K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water Resour. 2011, 34, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, P.; Sonnenborg, T.O.; Goncear, G.; Hinsby, K. Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol. Earth Syst. Sci. 2013, 17, 421–443. [Google Scholar] [CrossRef] [Green Version]
- Giambastiani, B.M.S.; Colombani, N.; Mastrocicco, M.; Fidelibus, M.D. Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): Hydrology, hydrochemistry and evolution of the system. J. Hydrol. 2013, 501, 35–44. [Google Scholar] [CrossRef]
- Cozzolino, D.; Greggio, N.; Antonellini, M.; Giambastiani, B.M.S. Natural and anthropogenic factors affecting freshwater lenses in coastal dunes of the Adriatic coast. J. Hydrol. 2017, 551, 804–818. [Google Scholar] [CrossRef]
- Sestini, G. Implication of climatic changes for the Po Delta and Venice lagoon. In Climatic Change and the Mediterranean; Jeftic, L., Milliman, J.D., Sestini, G., Eds.; UNEP: London, UK, 1992; pp. 429–491. [Google Scholar]
- De Louw, P.; Oude Essink, G.H.P. Salinization of the Northern coastal area of the Netherlands due to land subsidence and sea level rise. In Coastal Environmental and Water Quality, Proceedings of the AIH Annual Meeting & International Conference, Challenges in Coastal Hydrology and Water Quality, Baton Rouge, LA, USA, 1 May 2006; Xu, Y., Singh, V.P., Eds.; 2006; pp. 167–179. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjplaasv4bnAhXJ34UKHTvhC70QFjAAegQIBRAC&url=https%3A%2F%2Fpublicwiki.deltares.nl%2Fdownload%2Fattachments%2F22183945%2Fartikel5.pdf%3Fversion%3D1%26modificationDate%3D1268750480000%26api%3Dv2&usg=AOvVaw0J2xyy1p_HatSETWg1wa-q (accessed on 15 January 2020).
- Oude Essink, G.H.P.; Kooi, H. Land-subsidence and sea-level rise threaten fresh water resources in the coastal groundwater system of the Rijnland water board, The Netherlands. In Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations; Treidel, H., Martin-Bordes, J.L., Gurdak, J.J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; p. 401. [Google Scholar]
- Pauw, P.S.; de Louw, P.G.B.; Oude Essink, G.H.P. Groundwater salinization in the Wadden Sea area of the Netherlands; quantifying the effects of climate change, sea level rise and anthropogenic interferences. Neth. J. Geosci. 2012, 91, 373–383. [Google Scholar]
- Mollema, P.; Antonellini, M.; Gabbianelli, G.; Laghi, M.; Marconi, V.; Minchio, A. Climate and water budget change of a Mediterranean coastal watershed, Ravenna, Italy. Environ. Earth Sci. 2012, 65, 257–276. [Google Scholar] [CrossRef]
- Mollema, P.; Antonellini, M.; Dinelli, E.; Greggio, N.; Stuyfzand, P.J. The influence of flow-through saline gravel pit lakes on the hydrologic budget and hydrochemistry of a Mediterranean drainage basin. Limnol. Oceanogr. 2015, 60, 2009–2025. [Google Scholar] [CrossRef] [Green Version]
- Galloway, D.D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; U.S. Geological Survey: Reston, VA, USA, 1996; p. 320.
- Mollema, P.N.; Antonellini, M.; Dinelli, E.; Gabbianelli, G.; Greggio, N.; Stuyfzand, P.J. Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments. Appl. Geochem. 2013, 34, 207–221. [Google Scholar] [CrossRef]
- Giambastiani, B.M.S.; Greggio, N.; Nobili, G.; Dinelli, E.; Antonellini, M. Forest fire effects on groundwater in a coastal aquifer (Ravenna, Italy). Hydrol. Process. 2018, 32, 2377–2389. [Google Scholar] [CrossRef]
- Greggio, N.; Giambastiani, B.M.S.; Balugani, E.; Amaini, C.; Antonellini, M. High-resolution electrical resistivity tomography (ERT) to characterize the spatial extension of freshwater lenses in a salinized coastal aquifer. Water 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Greggio, N.; Giambastiani, B.M.S.; Antonellini, M. Infiltration/irrigation trench for sustainable coastal drainage management: Emilia-Romagna (Italy). Environ. Eng. Manag. J. 2018, 17, 2379–2390. [Google Scholar] [CrossRef]
- Greggio, N.; Mollema, P.; Antonellini, M.; Gabbianelli, G. Irrigation management in coastal zones to prevent soil and groundwater salinization. In Resource Management for Sustainable Agriculture; Vikas, A., Peeyush, S., Eds.; IntechOpen: London, UK, 2018; pp. 21–48. [Google Scholar]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Carminati, E.; Martinelli, G. Subsidence rates in the Po Plain, northern Italy: The relative impact of natural and anthropogenic causation. Eng. Geol. 2002, 66, 241–255. [Google Scholar] [CrossRef]
- Gambolati, G.; Ricceri, G.; Bertoni, W.; Brighenti, G.; Vuillermin, E. Mathematical simulation of the subsidence of Ravenna. Water Resour. Res. 1991, 27, 2899–2918. [Google Scholar] [CrossRef]
- Antonellini, M.; Giambastiani, B.M.S.; Greggio, N.; Bonzi, L.; Calabrese, L.; Luciani, P.; Perini, L.; Severi, P. Processes governing natural land subsidence in the shallow coastal aquifer of the Ravenna coast, Italy. Catena 2019, 172, 76–86. [Google Scholar] [CrossRef]
- Amorosi, A.; Colalongo, M.L.; Fiorini, F.; Fusco, F.; Pasini, G.; Vaiani, S.C.; Sarti, G. Palaeogeographic and paleoclimatic evolution of the Po Plain from 150-Ky core records. Glob. Planet. Chang. 2004, 40, 55–78. [Google Scholar] [CrossRef]
- Marchesini, L.; Amorosi, A.; Cibin, U.; Zuffa, G.G.; Spadafora, E.; Preti, D. Sand composition and sedimentary evolution of a Late Quaternary depositional sequence, northwestern Adriatic Coast, Italy. J. Sediment. Res. 2000, 70, 829–838. [Google Scholar] [CrossRef]
- Amorosi, A.; Colalongo, M.L.; Pasini, G.; Preti, D. Sedimentary response to late Quaternary sea-level changes in the Romagna Coastal Plain (Northern Italy). Sedimentology 1999, 46, 99–121. [Google Scholar] [CrossRef]
- Van Straaten, L.M.J.U. Holocene and Late Pleistocene sedimentation in the Adriatic Sea. Geol. Rundsch. 1970, 60, 106–131. [Google Scholar] [CrossRef]
- Amorosi, A.; Dinelli, E.; Rossi, V.; Vaiani, V.; Sacchetto, M. Late Quaternary palaeoenvironmental evolution of the Adriatic coastal plain and the onset of Po River Delta. Palaeogeogr. Palaeocl. 2008, 268, 80–90. [Google Scholar] [CrossRef]
- Campo, B.; Amorosi, A.; Vaiani, S.C. Sequence stratigraphy and late Quaternary paleoenvironmental evolution of the Northern Adriatic coastal plain (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 265–278. [Google Scholar] [CrossRef]
- Correggiari, A.; Roveri, M.; Trincardi, F. Late-Pleistocene and Holocene evolution of The North Adriatic Sea. II Quat. 1996, 9, 697–704. [Google Scholar]
- Greggio, N. Individuazione di Tecniche di Gestione Idrica-Agronomica e di Ricarica Dell’Acquifero Freatico Costiero Per Limitare la Salinizzazione Delle Acque Sotterranee e dei Suoli. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2013. Available online: http://amsdottorato.unibo.it/5213/ (accessed on 21 November 2019).
- Thornthwaite, C.W.; Mather, J.R. The water balance. In Publications in Climatology; Drexel Institute of Technology Laboratory of Climatology: Centerton, NJ, USA, 1955; p. 104. [Google Scholar]
- Turc, L. Nouvelles formule pour le bilan de Peau en function des valeurs moyennes annuelles des pre´cipitations et de la tempe´rature: Comptes Rendus de l’Acade´mie Sciences (New Formulas for the Estimation of Runoff, Using the Average Annual Values of Temperature and Precipitation). Proc. Natl. Acad. Sci. USA 1951, 233, 633–635. (In French) [Google Scholar]
- Koopman, S.J.; Durbin, J. Time Series Analysis by State Space Methods, 2nd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Koopman, S.J.; Durbin, J. Fast filtering and smoothing for non-stationary time series models. JASA 2000, 92, 1630–1638. [Google Scholar] [CrossRef]
- Koopman, S.J.; Durbin, J. Filtering and smoothing of state vector for diffuse state space models. J. Time Ser. Anal. 2003, 24, 85–98. [Google Scholar] [CrossRef]
- Helske, J. KFAS: Exponential Family State Space Models in R. J. Stat. Softw. 2017, 78, 1–39. [Google Scholar] [CrossRef] [Green Version]
- EEA. CORINE Land Cover Technical Guide—Addendum 2000 (Technical Report No. 40)—European Environment Agency, Copenhagen. 2000. Available online: https://www.eea.europa.eu/publications/tech40add (accessed on 21 November 2019).
- Corticelli, S.; Mariani, M.C.; Masi, S. Incremento Artificializzato 2003–2007 Nella Regione Emilia-Romagna. In Proceedings of the 14th National Conference ASITA, Brescia, Italy, 9–12 November 2010; Available online: http://atti.asita.it/ASITA2010/index.html (accessed on 21 November 2019).
- Gudulas, K.; Voudouris, K.; Soulios, G.; Dimopoulos, G. Comparison of different methods to estimate actual evapotranspiration and hydrologic balance. Desalin. Water Treat. 2013, 51, 2945–2954. [Google Scholar] [CrossRef]
- ISPRA. Variazioni e Tendenze Degli Estremi di Temperatura e Precipitazione in Italia. Stato dell’Ambiente. 2013. Available online: http://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente/variazioni-e-tendenze-degli-estremi-di-temperatura-e-precipitazione-in-italia (accessed on 21 November 2019).
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE T. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Carbognin, L.; Teatini, P.; Tosi, L.; Strozzi, T.; Tomasin, A. Present relative sea level rise in the Northern Adriatic Coastal Area. Coastal and Marine Spatial Planning. 2011, pp. 1147–1162. Available online: http://eprints.bice.rm.cnr.it/id/eprint/10023 (accessed on 15 January 2020).
- De Louw, P.G.B.; Oude Essink, G.H.P.; Stuyfzand, P.J.; van der Zee, S.E.A.T.M. Upward groundwater flow in boils as the dominant mechanism of salinization in deep polders, The Netherlands. J. Hydrol. 2010, 394, 494–506. [Google Scholar] [CrossRef]
- De Louw, P.G.B.; van der Velde, Y.; Zee, S.V.D. Quantifying water and salt fluxes in a lowland polder catchment dominated by boil seepage: A probabilistic end-member mixing approach. Hydrol. Earth Syst. Sci. 2011, 15, 2101–2117. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.W.; Georgian, T.; Ambrose, H.; Siniscalchi, J.; Fredrick, K. Estimating flow and flux of ground water discharge using water temperature and velocity. J. Hydrol. 2004, 296, 221–233. [Google Scholar] [CrossRef]
- Kalbus, E.; Schmidt, C.; Molson, J.W.; Reinstorf, F.; Schirmer, M. Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. HESS Hydrol. Earth Syst. Sci. 2009, 13, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001; pp. 66–112. [Google Scholar]
- Meyer, R.; Engesgaard, P.; Sonnenborg, T.O. Origin and dynamics of saltwater intrusion in a regional aquifer: Combining 3-D saltwater modelling with geophysical and geochemical data. Water Resour. Res. 2019, 55, 1792–1813. [Google Scholar] [CrossRef] [Green Version]
- Bhattachan, A.; Emanuel, R.E.; Ardòn, M.; Bernhardt, E.S.; Anderson, S.M.; Stillwagon, M.G.; Ury, E.A.; BenDor, T.K.; Wright, J.P. Evaluating the effects of land-use change and future climate change on vulnerability of coastal landscapes to saltwater intrusion. Elem. Sci. Anth. 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Cencini, C. Physical processes and human activities in the evolution of the Po Delta, Italy. J. Coastal Res. 1998, 14, 774–793. [Google Scholar]
- Sekovski, I.; Armaroli, C.; Calabrese, L.; Mancini, F.; Stecchi, F.; Perini, L. Coupling scenarios or urban growth and flood hazards along the Emilia-Romagna coast (Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 2331–2346. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L. Urbanisation and land take of High Quality Agricultural Soils—Exploring long-term land use changes and land capability in Northern Italy. Int. J. Environ. Res. 2014, 8, 181–192. [Google Scholar]
- Miller, J.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Saghafian, B.; Farazjoo, H.; Bozorgy, B.; Yazdandoost, F. Flood intensification due to changes in land use. Water Resour. Manag. 2008, 22, 1051–1067. [Google Scholar] [CrossRef]
- Sofia, G.; Ragazzi, F.; Giandon, P.; Dalla Fontana, G.; Tarolli, P. On the linkage between runoff generation, land drainage, soil properties, and temporal patterns of precipitation in agricultural floodplains. Adv. Water Resour. 2019, 124, 120–138. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrol. Process. 2016, 30, 543–557. [Google Scholar] [CrossRef]
- Prudic, D.E. Estimates of Hydraulic Conductivity from Aquifer-Test Analyses and Specific Capacity Data, Gulf Coast Regional Aquifer Systems, South-Central United States. In Water-Resources Investigations Report 90–4121; Books and Open-File Report Section; U.S. Geological Survey: Austin, TX, USA, 1991. Available online: https://pubs.er.usgs.gov/publication/wri904121 (accessed on 15 January 2020).
- Sanchez-Vila, X.; Guadagnini, A.; Carrera, J. Representative hydraulic conductivities in saturated groundwater flow. Rev. Geophys. 2006, 44, RG3002. [Google Scholar] [CrossRef]
- Renard, P.; Le Loc’h, G.; Ledoux, E.; de Marsily, G.; Mackay, R. A fast algorithm for the estimation of the equivalent hydraulic conductivity of heterogeneous media. Water Resour. Res. 2000, 36, 3567–3580. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Narsilio, G.A.; Santamarina, J.C. Hydraulic conductivity in spatially varying media—A pore scale investigation. Geophys. J. Int. 2011, 184, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Freeze, R.A. A stochastic-conceptual analysis of one-dimensional ground-water flow in nonuniform homogeneous media. Water Resour. Res. 1975, 11, 725–741. [Google Scholar] [CrossRef]
- Madden, T.R. Random networks and mixing laws. Geophysics 1976, 41, 1104–1125. [Google Scholar] [CrossRef]
- Antonellini, M.; Allen, D.M.; Mollema, P.N.; Capo, D.; Greggio, N. Groundwater freshening following coastal progradation and land reclamation of the Po Plain, Italy. Hydrogeol. J. 2015, 23, 1009–1026. [Google Scholar] [CrossRef]
- Artese, G.; Fiaschi, S.; Di Martire, D.; Tessitori, S.; Fabris, M.; Achilli, V.; Ahmed, A.; Borgstrom, S.; Calcaterra, D.; Ramondini, M.; et al. Monitoring of land subsidence in Ravenna Municipality using SAR—GPS techniques: Description and first results. In Proceedings of the 23rd ISPRS 2016, Prague, Czech Republic, 12–19 July 2016. [Google Scholar]
- Cerenzia, I.; Putero, D.; Bonsignore, F.; Galassi, G.; Olivieri, M.; Spada, G. Historical and recent sea level rise and land subsidence in Marina di Ravenna, northern Italy. Ann. Geophys-Italy 2016, 59, P0546. [Google Scholar]
Time Interval | r (lag0) | r (lag1) | r (lag2) | r (lag3) | r (lag4) | r (lag5) | r (lag6) |
---|---|---|---|---|---|---|---|
1971–1981 | 0.25 | 0.33 | 0.24 | 0.15 | 0.12 | 0.09 | 0.07 |
2006–2016 | 0.27 | 0.36 | 0.26 | 0.19 | 0.13 | 0.10 | 0.08 |
Time Interval | Subsidence Rate (mm/year) |
---|---|
1972–1977 | 45 |
1977–1982 | 5.5 |
1982–1986 | 5.0 |
1986–1992 | 6.0 |
1992–2002 | 5.0 |
2002–2006 | 5.8 |
2006–2011 | 5.7 |
2011–2017 | 4.4 |
Total subsidence (mm) | |
1971–2017 | 482.2 |
qv (mm) | Kv (m/day) | |||
---|---|---|---|---|
Arithmetic Mean | Geometric Mean | Harmonic Mean | ||
0.14 | 0.03 | 0.01 | ||
Sand unit thickness (m) | 10 | 588 | 139 | 33 |
11 | 534 | 126 | 30 | |
12 | 490 | 116 | 27 | |
14 | 420 | 99 | 23 | |
15 | 392 | 92 | 22 | |
Mean qv | 485 | 114 | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giambastiani, B.M.S.; Macciocca, V.R.; Molducci, M.; Antonellini, M. Factors Affecting Water Drainage Long-Time Series in the Salinized Low-Lying Coastal Area of Ravenna (Italy). Water 2020, 12, 256. https://doi.org/10.3390/w12010256
Giambastiani BMS, Macciocca VR, Molducci M, Antonellini M. Factors Affecting Water Drainage Long-Time Series in the Salinized Low-Lying Coastal Area of Ravenna (Italy). Water. 2020; 12(1):256. https://doi.org/10.3390/w12010256
Chicago/Turabian StyleGiambastiani, Beatrice Maria Sole, Vito Raffaele Macciocca, Mario Molducci, and Marco Antonellini. 2020. "Factors Affecting Water Drainage Long-Time Series in the Salinized Low-Lying Coastal Area of Ravenna (Italy)" Water 12, no. 1: 256. https://doi.org/10.3390/w12010256
APA StyleGiambastiani, B. M. S., Macciocca, V. R., Molducci, M., & Antonellini, M. (2020). Factors Affecting Water Drainage Long-Time Series in the Salinized Low-Lying Coastal Area of Ravenna (Italy). Water, 12(1), 256. https://doi.org/10.3390/w12010256