Hydrodynamics of Uasb Reactor Treating Domestic Wastewater: A Three-Dimensional Numerical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mesh Generation
2.2. Mathematical Modeling
2.2.1. The model
- (a)
- Turbulent and steady state flow regime.
- (b)
- Three-phase turbulent flow consisting of a continuous phase (liquid-α) and two dispersed phases (biogas-β and sludge-γ).
- (c)
- The biogas produced was considered as being composed of methane (70%) and carbon dioxide (30%).
- (d)
- Gas bubbles and sludge particles were considered as spherical with a diameter of 0.003 m.
- (e)
- Production of bubbles was considered uniform over the cross section of the sludge blanket, positioned at 0.44 m from the reactor base.
- (f)
- The interfacial transfer of momentum between the phases α and β is only due to the drag force.
- (g)
- The source of momentum for the external forces depended only on the buoyancy force.
- (h)
- (i)
- The biochemical reactions effects have been disregarded.
2.2.2. Boundary Conditions and Physical Properties of the Phases
3. Results and Discussion
4. Conclusions
- -
- The mathematical model used to describe the flow hydrodynamics in the UASB reactor was quite satisfactory, as it adequately reproduced the physical behavior inside the reactor.
- -
- Recirculation zones (eddies) were observed in the region between the gas deflector and the three-phase separator, as well as next to the walls of the separator, resulting from the increased velocity of the phases in the smaller diameter section of the deflector, associated with the unbalance between the forces of drag, thrust, and weight acting on the particles of gas (bubbles) and sludge. These recirculation zones contributed to the settlement of solid particles inside the gas deflector (inclination upwards). This observation was confirmed by the direct proportional relationship obtained between the mass flow and retention of solids in the UASB reactor.
- -
- Results obtained with the three-dimensional mesh validated the presence of a radial and angular symmetrical behavior, indicating the possibility of studying the fluid dynamics in the UASB reactor using a two-dimensional mesh.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yetilmezsoy, K. Integration of kinetic modeling and desirability function approach for multi-objective optimization of UASB reactor treating poultry manure wastewater. Bioresour. Technol. 2012, 118, 89–101. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, Q.B.; Zhao, J.B.; Sheng, G.P.; Tang, Y.; Tong, Z.H.; Yu, H.Q.; Li, Y.Y.; Harada, H. Monitoring the restart-up of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of a soybean processing wastewater. Bioresour. Technol. 2010, 101, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.T.; Mu, Y.; Ni, B.J.; Yu, H.Q. Hydrodynamics of upflow anaerobic sludge blanket reactors. AIChE J. 2009, 55, 516–528. [Google Scholar] [CrossRef]
- Moawad, A.; Mahmouda, U.F.; El-Khateebb, M.A.; El-Mollaa, E. Coupling of sequencing batch reactor and UASB reactor for domestic wastewater treatment. Desalination 2009, 242, 325–335. [Google Scholar] [CrossRef]
- Puyol, D.; Mohedano, A.F.; Sanz, J.L.; Rodríguez, J.J. Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2,4-dichlorophenol. Chemosphere 2009, 76, 1192–1198. [Google Scholar] [CrossRef]
- Narnoli, S.K.; Mehrotra, I. Sludge Blanket of UASB Reactor: Mathematical Simulation. Water Res. 1997, 31, 715–726. [Google Scholar] [CrossRef]
- Tay, J.H.; Yan, Y.G. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Env. 1996, 68, 1140–1150. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Chui, H.K.; Li, Y.Y. Microbial Structure and Activity of UASB Granules Treating Different Wastewaters. Water Sci. Technol. 1994, 30, 87–96. [Google Scholar] [CrossRef]
- Lettinga, G.; Van Velsen, A.F.; Hobma, S.W.; Zeeuw, W.; Klapwy, A. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment especially for anaerobic treatment. Biotechnol. Bioeng. 1980, 22, 699–734. [Google Scholar] [CrossRef]
- Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sheibani, S. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology. J. Hazard. Mater. 2011, 197, 26–32. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Zheng, P.; Mahmood, Q.; Mei, L. Filamentous granular sludge bulking in a laboratory scale UASB reactor. Bioresour. Technol. 2008, 99, 3431–3438. [Google Scholar] [CrossRef]
- Pol, L.W.H.; Lopes, S.I.C.; Lettinga, G.; Lens, P.N.L. Anaerobic sludge granulation. Water Res. 2004, 38, 1376–1389. [Google Scholar] [CrossRef]
- Bhunia, P.; Ghangrekar, M. Influence of biogas-induced mixing on granulation in UASB reactors. Biochem. Eng. J. 2008, 41, 136–141. [Google Scholar] [CrossRef]
- Vlyssides, A.; Barampouti, E.M.; Mai, S. Granulation mechanism of a UASB reactor supplemented with iron. Anaerobe 2008, 14, 275–279. [Google Scholar] [CrossRef]
- Tay, J.H.; Xu, H.L.; Teo, K.C. Molecular mechanism of granulation. I: Hþ translocation-dehydration theory. J. Env. Eng. 2000, 126, 403–410. [Google Scholar] [CrossRef]
- Vlyssides, A.; Barampouti, E.M.; Mai, S. Influence of ferrous iron on the granularity of a UASB reactor. Chem. Eng. J. 2009, 146, 49–56. [Google Scholar] [CrossRef]
- Majumder, P.S.; Gupta, S.K. Degradation of 4-chlorophenol in UASB reactor under methanogenic conditions. Bioresour. Technol. 2008, 99, 4169–4177. [Google Scholar] [CrossRef]
- Lauwers, J.; Appels, L.; Thompson, I.P.; Degrève, J.; Van Impe, J.F.; Dewil, R. Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations. Prog. Energy Combust. Sci. 2013, 39, 383–402. [Google Scholar] [CrossRef] [Green Version]
- Chong, S.; Sen, T.K.; Kayaalp, A.; Ang, H.M. The performance enhancements of upflow anaerobic sludge blanket reactors for domestic sludge treatment-A state of the art review. Water Res. 2012, 46, 3434–3470. [Google Scholar] [CrossRef]
- Van Haandell, A.C.; Lettinga, G. Anaerobic Sewage Treatment: A Practical Guide for Regions with a Hot Climate; John Wiley and Sons: Chichester, UK, 1994. [Google Scholar]
- Isik, M.; Sponza, D.T. Effects of Alkalinity and Co-substrate on the Performance of an Upflow Anaerobic Sludge Blanket (UASB) Reactor Through Decolorization of Congo Red Azo Dye. Bioresour. Technol. 2005, 96, 633–643. [Google Scholar] [CrossRef]
- Peña, M.R.; Mara, D.D.; Avella, G.P. Dispersion and performance analysis of an UASB reactor under different hydraulic loading rates. Water Res. 2006, 40, 445–452. [Google Scholar] [CrossRef]
- Vieira, S.M.M.; Garcia Jr, A.D. Sewage treatment by UASB-reactor. Operation results and recommendations for design and utilization. Water Sci Technol. 1992, 25, 143–157. [Google Scholar] [CrossRef]
- Van Lier, J.B.; Vashi, A.; Lubbe, J.V.D.; Heffernan, B. Anaerobic Sewage Treatment using UASB Reactors: Engineering and Operational Aspects. Environ. Anaerob. Technol. 2010, 59–89. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.C.; Yang, Z. Technical review on the UASB process. Int. J. Environ. Stud. 1991, 39, 203–222. [Google Scholar] [CrossRef]
- Lima, M.G.S.; Neto, S.R.F.; Lima, A.G.B.; Nunes, F.C.B.; Gomes, L.A. Theoretical/Experimental Study of an Upflow Anaerobic Sludge Blanket Reactor Treating Domestic Wastewater. Int. J. Chem. React. Eng. 2011, 9, 1–24. [Google Scholar] [CrossRef]
- Ishii, M.; Zuber, N. Drag coefficient and relative velocity in bubbly, droplet and particulate flow. AlChE J. 1979, 25, 834–854. [Google Scholar] [CrossRef]
- Schiller, L.; Naumann, Z. Über die grundlegenden Berechungen bei der Schwerkraftbereitung. Z. Ver. Dtsch. Inglaterra. 1933, 77, 318. [Google Scholar]
- Campos, J.R. Sanitary Sewage Treatment by Anaerobic Process. and Controlled Soil Disposal; PROSAB: Rio de Janeiro, Brasil, 1999. (In Portuguese)
- Manual CFX 10.0; Ansys: Harwell, UK, 2005.
Location | Value |
---|---|
Reactor inlet | |
Reactor walls | |
Outlet (reactor top) | Static pressure: 98,000 Pa |
Property | Continuous Phase (Liquid) | Dispersed Phase (Biogas) | Dispersed Phase (Solid) |
---|---|---|---|
Density, ρ (kg.m−3) | 997 | 0.72 | 1020 |
Dynamics viscosity, μ (Pa.s) | |||
Particle diameter, dβ (m) | - | 0.003 * | 0.003 ** |
Surface tension, σ, (N.m-1) | 0.072 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, M.G.S.L.; Nunes, F.C.B.; Magalhães, H.L.F.; Lima, W.M.P.B.; Moura, F.L.C.; Farias Neto, S.R.; Lima, A.G.B. Hydrodynamics of Uasb Reactor Treating Domestic Wastewater: A Three-Dimensional Numerical Study. Water 2020, 12, 279. https://doi.org/10.3390/w12010279
Brito MGSL, Nunes FCB, Magalhães HLF, Lima WMPB, Moura FLC, Farias Neto SR, Lima AGB. Hydrodynamics of Uasb Reactor Treating Domestic Wastewater: A Three-Dimensional Numerical Study. Water. 2020; 12(1):279. https://doi.org/10.3390/w12010279
Chicago/Turabian StyleBrito, Maria G. S. L., Flávio C. B. Nunes, Hortência L. F. Magalhães, Wanderson M. P. B. Lima, Flávia L. C. Moura, Severino R. Farias Neto, and Antonio G. B. Lima. 2020. "Hydrodynamics of Uasb Reactor Treating Domestic Wastewater: A Three-Dimensional Numerical Study" Water 12, no. 1: 279. https://doi.org/10.3390/w12010279
APA StyleBrito, M. G. S. L., Nunes, F. C. B., Magalhães, H. L. F., Lima, W. M. P. B., Moura, F. L. C., Farias Neto, S. R., & Lima, A. G. B. (2020). Hydrodynamics of Uasb Reactor Treating Domestic Wastewater: A Three-Dimensional Numerical Study. Water, 12(1), 279. https://doi.org/10.3390/w12010279