Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection
Abstract
:1. Introduction
2. The Area under Study
2.1. Investigations Included in this Overview—Collected Parameters
2.2. National Standards for Potable Use in RSA and MZ
3. Results
3.1. Occurrence of Macro-Pollutants, Inorganic Chemicals, PAHs, and Microorganisms in Surface Water
3.2. Occurrence of Macro-Pollutants and Microorganisms in Groundwater
3.3. Occurrence of Micropollutants in Surface Water and Groundwater
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MZ | Mozambique |
PAHs | Polycyclic aromatic hydrocarbons |
RSA | Republic of South Africa |
WHO | World Health Organization |
References
- WHO. Progress on Drinking Water, Sanitation and Hygiene 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1 (accessed on 26 November 2019).
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa. Sci. Total Environ. 2015, 537, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Edokpayi, J.N.; Odiyo, J.O.; Msagati, T.A.M.; Potgieter, N. Temporal variations in physico-chemical and microbiological characteristics of Mvudi river, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 4128–4140. [Google Scholar] [CrossRef] [PubMed]
- Fekadu, S.; Alemayehu, E.; Dewil, R.; Van der Bruggen, B. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Sci. Total Environ. 2019, 654, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Abiye, T.; Leshomo, J. Metal enrichment in the groundwater of the arid environment in South Africa. Environ. Earth Sci. 2014, 72, 4587–4598. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Buurman, J.; Van Ginkel, K.C.H. Urban water security: A review. Environ. Res. Lett. 2018, 13, 053002. [Google Scholar] [CrossRef]
- Flindt Jørgensen, L.; Villholth, K.G.; Refsgaard, J.C. Groundwater management and protection in Denmark: A review of pre-conditions, advances and challenges. Int. J. Water Resour. Dev. 2017, 33, 868–889. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Nkhuwa, D.C.W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M.E.; Tijani, M.N.; Wright, J. Urban groundwater quality in sub-saharan africa: Current status and implications for water security and public health. Hydrogeol. J. 2017, 25, 1093–1116. [Google Scholar] [CrossRef]
- Momba, M.N.B.; Obi, C.L.; Thompson, P. Survey of disinfection efficiency of small drinking water treatment plants: Challenges facing small water treatment plants in South Africa. Water SA 2009, 35, 485–494. [Google Scholar] [CrossRef]
- Statistics South Africa. Statistical Release P0302. Mid-Year Population Estimates for 2019. Available online: http://www.statssa.gov.za/publications/P0302/P03022019.pdf (accessed on 26 November 2019).
- Statistics South Africa. Statistical Release P0318. General Household Survey for 2018. Available online: http://www.statssa.gov.za/publications/P0318/P03182018.pdf (accessed on 26 November 2019).
- INE (Istituto Nacional de Estatistica). Censo 2017, IV Recenseamento Geral da População e Habitação (RGPH) 2017 (in Portuguese). Available online: http://www.ine.gov.mz/operacoes-estatisticas/censos/censo-2007/censo-2017/divulgacao-de-resultados-preliminares-do-iv-rgph-2017.pdf/view (accessed on 26 November 2019).
- FAO. Food and Agriculture Organization of the United Nations. AQUASTAT Report 2016. Country Profile—Mozambique. Available online: http://www.fao.org/3/i9805en/I9805EN.pdf (accessed on 26 November 2019).
- WHO/UNICEF. World Health Organization/United Nations Children’s Fund. JMP Global Database. 2017. Available online: https://washdata.org/data/household#!/ (accessed on 26 November 2019).
- RSA. Republic of South Africa. GNR.509 of 8 June 2001: Regulations Relating to Compulsory National Standards and Measures to Conserve Water. Regulation Gazette 7079, Government Gazette 22355. Available online: https://cer.org.za/wp-content/uploads/2011/10/Regulations-relating-to-compulsory-national-standards-and-measures-to-conserve-water.pdf (accessed on 26 November 2019).
- DWA. Department of Water Affairs, South Africa 2009. Development of Reconciliation Strategies for all Towns in the Southern Planning Region: Inception Report; Prepared by Umvoto Africa (Pty) Ltd. in Association with Aurecon (Pty) Ltd. on behalf of the Directorate: National Water Resource Planning; Department of Water Affairs: Pretoria, South Africa, 2009.
- UNDP (United Nations Development Programme). Human Development Report 2006. Beyond Scarcity: Power, Poverty and the Global Water Crisis. Available online: http://hdr.undp.org/sites/default/files/reports/267/hdr06-complete.pdf (accessed on 26 November 2019).
- Esterhuizen, L.; Fossey, A.; Potgieter, E. Groundwater quality on dairy farms in central South Africa. Water SA 2015, 41, 194–198. [Google Scholar] [CrossRef]
- Segura, P.A.; Takada, H.; Correa, J.A.; El Saadi, K.; Koike, T.; Onwona-Agyeman, S.; Ofosu-Anim, J.; Sabi, E.B.; Wasonga, O.V.; Mghalu, J.M. Global occurrence of anti-infectives in contaminated surface waters: Impact of income inequality between countries. Environ. Int. 2015, 80, 89–97. [Google Scholar] [CrossRef]
- Abiye, T.A.; Bhattacharya, P. Arsenic concentration in groundwater: Archetypal study from South Africa. Groundw. Sustain. Dev. 2019, 9, 100246. [Google Scholar] [CrossRef]
- Abiye, T.A.; Leshomo, J.T. Groundwater flow and radioactivity in Namaqualand, South Africa. Environ. Earth Sci. 2013, 70, 281–293. [Google Scholar] [CrossRef]
- Abiye, T.; Bybee, G.; Leshomo, J. Fluoride concentrations in the arid Namaqualand and the Waterberg groundwater, South Africa: 45. Understanding the controls of mobilization through hydrogeochemical and environmental isotopic approaches. Groundw. Sustain. Dev. 2018, 6, 112–120. [Google Scholar] [CrossRef]
- Agunbiade, F.O.; Moodley, B. Pharmaceuticals as emerging organic contaminants in Umgeni river water system, KwaZulu-natal, South Africa . Environ. Monit. Assess. 2014, 186, 7273–7291. [Google Scholar] [CrossRef]
- Agunbiade, F.O.; Moodley, B. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ. Toxicol. Chem. 2016, 35, 36–46. [Google Scholar] [CrossRef]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef]
- Barbieri, M.; Ricolfi, L.; Vitale, S.; Muteto, P.V.; Nigro, A.; Sappa, G. Assessment of groundwater quality in the buffer zone of Limpopo National Park, Gaza Province, Southern Mozambique. Environ. Sci. Pollut. Res. 2019, 26, 62–77. [Google Scholar] [CrossRef]
- Bezuidenhout, C.C.; Mthembu, N.; Puckree, T.; Lin, J. Microbiological evaluation of the Mhlathuze river, KwaZulu-natal (RSA). Water SA 2002, 28, 281–286. [Google Scholar] [CrossRef]
- Chilundo, M.; Kelderman, P.; Ókeeffe, J.H. Design of a water quality monitoring network for the Limpopo river basin in Mozambique. Phys. Chem. Earth 2008, 33, 655–665. [Google Scholar] [CrossRef]
- Dzoma, B.M.; Moralo, R.A.; Motsei, L.E.; Ndou, R.V.; Bakunzi, F.R. Preliminary findings on the levels of five heavy metals in water, sediments, grass and various specimens from cattle grazing and watering in potentially heavy metal polluted areas of the north west Province of South Africa. J. Anim. Vet. Adv. 2010, 9, 3026–3033. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Olasoji, S.O. Assessment of heavy metal contamination of Dzindi River, in Limpopo Province, South Africa. Int. J. Nat. Sci. Res. 2014, 2, 185–194. [Google Scholar]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Assessment of trace metals contamination of surface water and sediment: A case study of Mvudi river, South Africa. Sustainability 2016, 8, 135. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe district, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 387. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele river, South Africa. Open Chem. 2017, 15, 272–282. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Enitan, A.M.; Mutileni, N.; Odiyo, J.O. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe district, Limpopo Province, South Africa. Chem. Cent. J. 2018, 12, 2. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Muyima, N.Y.O.; Lujiza, N. Situation analysis of water quality in the Umtata river catchment. Water SA 2001, 27, 467–473. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Lujiza, N.; Ogunfowokan, A.O. Trace metal pollution in Umtata river. Water SA 2002, 28, 183–189. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Awofolu, R. Levels of Cd, Hg and Zn in some surface waters from the Eastern Cape Province, South Africa. Water SA 2003, 29, 375–380. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Awofolu, O.R.; Genthe, B. Cadmium in the Umtata river and the associated health impact on rural communities who are primary users of water from the river. Water SA 2004, 30, 507–513. [Google Scholar] [CrossRef]
- Gumbi, B.P.; Moodley, B.; Birungi, G.; Ndungu, P.G. Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry. Chemosphere 2017, 168, 1042–1050. [Google Scholar] [CrossRef]
- Jackson, V.A.; Paulse, A.N.; Van Stormbroek, T.; Odendaal, J.P.; Khan, W. Investigation into metal contamination of the Berg river, Western Cape, South Africa. Water SA 2007, 33, 175–182. [Google Scholar] [CrossRef]
- Jackson, V.A.; Paulse, A.N.; Odendaal, J.P.; Khan, W. Investigation into the Metal Contamination of the Plankenburg and Diep Rivers, Western Cape, South Africa. Water SA 2009, 35, 289–300. [Google Scholar] [CrossRef]
- Leusch, F.D.L.; Neale, P.A.; Arnal, C.; Aneck-Hahn, N.H.; Balaguer, P.; Bruchet, A.; Escher, B.I.; Esperanza, M.; Grimaldi, M.; Leroy, G.; et al. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Res. 2018, 139, 10–18. [Google Scholar] [CrossRef]
- Lin, J.; Biyela, P.T.; Puckree, T.; Bezuidenhout, C.C. A study of the water quality of the Mhlathuze river, KwaZulu-natal (RSA): Microbial and physico-chemical factors. Water SA 2004, 30, 17–22. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Chimuka, L. Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ. Monit. Assess. 2017, 189, 348. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Muthwa, S.F.; Chimuka, L. Determination of triclosan and ketoprofen in river water and wastewater by solid phase extraction and high performance liquid chromatography. S. Afr. J. Chem. 2014, 67, 143–150. [Google Scholar]
- Manickum, T.; John, W. Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). Sci. Total Environ. 2014, 468–469, 584–597. [Google Scholar] [CrossRef]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-natal, South Africa. Environ. Sci. Pollut. Res. 2015, 22, 10298–10308. [Google Scholar] [CrossRef]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere 2015, 134, 133–140. [Google Scholar] [CrossRef]
- Nekhavhambe, T.J.; van Ree, T.; Fatoki, O.S. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandou, Limpopo Province, South Africa. Water SA 2014, 40, 415–424. [Google Scholar] [CrossRef]
- Obi, C.L.; Potgieter, N.; Bessong, P.O.; Matsaung, G. Assessment of the microbial quality of river water sources in rural Venda communities in South Africa. Water SA 2002, 28, 287–292. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R. Fluoride concentrations in groundwater and impact on human health in Siloam Village, Limpopo Province, South Africa. Water SA 2012, 38, 731–736. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R. Chemical and microbial quality of groundwater in Siloam village, implications to human health and sources of contamination. Int. J. Environ. Res. Public Health 2018, 15, 317. [Google Scholar] [CrossRef]
- Olatunji, O.S.; Fatoki, O.S.; Opeolu, B.O.; Ximba, B.J.; Chitongo, R. Determination of selected steroid hormones in some surface water around animal farms in Cape Town using HPLC-DAD. Environ. Monit. Assess. 2017, 189, 363. [Google Scholar] [CrossRef]
- Rimayi, C.; Odusanya, D.; Weiss, J.M.; de Boer, J.; Chimuka, L. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the Umgeni River estuary 2016 pollution incident, South Africa. Sci. Total Environ. 2018, 627, 1008–1017. [Google Scholar] [CrossRef]
- Sibanda, T.; Chigor, V.N.; Okoh, A.I. Seasonal and spatio-temporal distribution of faecal-indicator bacteria in Tyume river in the Eastern Cape Province, South Africa. Environ. Monit. Assess. 2013, 185, 6579–6590. [Google Scholar] [CrossRef]
- Van Wyk, N.; Coetzee, H. The distribution of uranium in groundwater in the Bushmanland and Namaqualand areas, Northern Cape Province, South Africa. In Uranium, Mining and Hydrogeology Paper; Merkel, B.J., Hasche-Berger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-87745-5. [Google Scholar]
- Wanda, E.M.M.; Nyoni, H.; Mamba, B.B.; Msagati, T.A.M. Occurrence of emerging micropollutants in water systems in Gauteng, Mpumalanga, and North West Provinces, South Africa. Int. J. Environ. Res. Public Health 2017, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.P.; Duvenage, C.S.J.; Rohwer, E. The occurrence of anti-retroviral compounds used for HIV treatment in South African surface water. Environ. Pollut. 2015, 199, 235–243. [Google Scholar] [CrossRef]
- Wooding, M.; Rohwer, E.R.; Naudé, Y. Determination of endocrine disrupting chemicals and antiretroviral compounds in surface water: A disposable sorptive sampler with comprehensive gas chromatography—Time-of-flight mass spectrometry and large volume injection with ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2017, 1496, 122–132. [Google Scholar] [CrossRef]
- DM 180/2004. Diploma Ministerial n. 180/2004. Boletim da República de Moçambique I (Serie, n. 37). Regulamento Sobre a Qualidade da agua para o Consumo Humano. Available online: http://extwprlegs1.fao.org/docs/pdf/moz65565.pdf (accessed on 26 November 2019).
- SANS 241-2015. South Africa National Standard 2015. Drinking Water; Part 1: Microbiological, Physical, Aesthetic and Chemical Determinands; Part 2: Application of SANS 241-1. Available online: https://www.mwa.co.th/download/prd01/iDW_standard/South_African_Water_Standard_SANS_241-2015.pdf (accessed on 26 November 2019).
- Loock, M.M.; Beukes, J.P.; van Zyl, P.G. Conductivity as an indicator of surface water quality in the proximity of ferrochrome smelters in South Africa. Water SA 2015, 41, 705–711. [Google Scholar] [CrossRef]
- Nevondo, T.S.; Cloete, T.E. Bacterial and chemical quality of water supply in the Dertig village settlement. Water SA 1999, 25, 215–220. [Google Scholar]
- Verlicchi, P.; Aviles Sacoto, E.C.; Zanni, G. Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis. Water 2019, 11, 779. [Google Scholar] [CrossRef]
- Matlou, D.P.; Bissong, M.E.A.T.; Tchatchouang, C.-D.K.; Adem, M.R.; Foka, F.E.T.; Kumar, A.; Ateba, C.N. Virulence profiles of vancomycin-resistant Enterococci isolated from surface and ground water utilized by humans in the north west Province, South Africa: A public health perspective. Environ. Sci. Pollut. Res. 2019, 26, 15105–15114. [Google Scholar] [CrossRef]
- De Battisti, A.; Formaglio, P.; Ferro, S.; Al Aukidy, M.; Verlicchi, P. Electrochemical disinfection of groundwater for civil use—An example of an effective endogenous advanced oxidation process. Chemosphere 2018, 207, 101–109. [Google Scholar] [CrossRef]
- Odjadjare, E.E.; Igbinosa, E.O.; Mordi, R.; Igere, B.; Igeleke, C.L.; Okoh, A.I. Prevalence of multiple antibiotics resistant (MAR) pseudomonas species in the final effluents of three municipal wastewater treatment facilities in South Africa. Int. J. Environ. Res. Public Health 2012, 9, 2092–2107. [Google Scholar] [CrossRef]
- Matsinhe, N.P.; Juízo, D.; Rietveld, L.C.; Persson, K.M. Water services with independent providers in peri-urban Maputo: Challenges and opportunities for long-term development. Water SA 2008, 34, 411–420. [Google Scholar] [CrossRef]
- Ncube, S.; Madikizela, L.M.; Chimuka, L.; Nindi, M.M. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. Water Res. 2018, 145, 231–247. [Google Scholar] [CrossRef]
- Isidro, J.; Llanos, J.; Sáez, C.; Lobato, J.; Cañizares, P.; Rodrigo, M.A. Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water . J. Environ. Manag. 2018, 222, 135–140. [Google Scholar] [CrossRef]
- Isidro, J.; Llanos, J.; Sáez, C.; Brackemeyer, D.; Cañizares, P.; Matthee, T.; Rodrigo, M.A. Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water? Chemosphere 2018, 209, 346–352. [Google Scholar] [CrossRef]
Group | Compounds | |
---|---|---|
Macropollutants | Ammonium, bicarbonate, chloride, chlorite, fluoride, nitrate, nitrite, phosphate, phosphorus, sulfate, total dissolved solids, total nitrogen | |
PAHs | Total PAHs | |
Inorganic chemicals | Aluminum, arsenic, barium, boron, bromine, cadmium, calcium, chromium, copper, iron, lead, lithium, magnesium, manganese, mercury, molybdenum, nickel, potassium, rubidium, silver, sodium, strontium, uranium, vanadium, zinc | |
Microorganisms | E. coli, Enterococci, heterotrophic bacteria, fecal coliform, total coliforms | |
Group | Class | Compounds |
Micropollutants | Analgesics and anti-inflammatories (A) | Acetaminophen, acetylsalicylic acid, codeine, diclofenac, ibuprofen, ketoprofen, meclofenamic acid, mefenamic acid, methocarbamol, n-desmethyltramadol, naproxen, o-desmethyltramadol, phenacetin, tramadol |
Antiarrhythmic agent (B) | Amiodarone | |
Antibiotics (C) | Ampicillin, azithromycin, chloramphenicol, chlortetracycline, ciprofloxacin, clarithromycin, dehydroerythromycin, erythromycin, nalidixic acid, oxytetracycline, streptomycin, sulfadimidine, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfasalazine, tetracycline, trimethoprim, tylosin | |
Antidiabetics (D) | Gliclazide, metformin | |
Antihistamines (E) | Fexofenadine | |
Antihypertensives (F) | Irbesartan, valsartan | |
Antiseptics (G) | Triclocarban, triclosan | |
Antivirals (H) | Didanosine, efavirenz, emtricitabine, lamivudine, lopinavir, nevirapine, stavudine, tenofovir, zalcitabine, zidovudine | |
Beta-blockers (I) | Atenolol | |
Drug precursor (J) | Pseudoephedrine | |
Fragrances (K) | Galaxolide, musk ketone, tonalide | |
Hormones (L) | 17-ethinylestradiol, 17-oestradiol, androstenedione, estriol, estrone, cortisone, progesterone, testosterone | |
Lipid regulators (M) | Atorvastatin, bezafibrate | |
Parabens (N) | Methylparaben, propylparaben | |
Psychiatric drugs (O) | Carbamazepine, carbamazepine-10, 11-epoxide, clozapine, diazepam, desvenlafaxine, licarbazepine, venlafaxine | |
Stimulants (P) | 1, 7-Dimethylxantine, amphetamine, caffeine, cotinine, methamphetamine, nicotine | |
UV filters (Q) | Benzophenone-3, benzophenone-4 | |
X-ray contrast media (R) | Iopromide | |
Pesticides (S) | Atrazine, bromacil, carbendazim, chlorpyrifos, diazinon, diuron, lindane, linuron, metolachlor, simazine, terbuthylazine, terbutryn | |
Plasticizers (T) | 2, 4, 6 Trichlorophenol, 4-nonylphenol, 4-t-amylphenol, 4-t-butylphenol, 4-t-octylphenol, bisphenol A, dibutylphthalate |
Contaminant | Unit | Si_MZ (DM-180/2004 [61]) | Si_RSA (SANS-241-1: 2015 [62]) |
---|---|---|---|
Aluminum | µg/L | 200 | ≤300 |
Ammonia | mg/L | 1.5 | ≤1.5 |
Arsenic | µg/L | 10 | ≤10 |
Barium | µg/L | 700 | ≤700 |
Boron | µg/L | 300 | ≤2400 |
Cadmium | µg/L | 3 | ≤3 |
Calcium | mg/L | 50 | |
Chloride | mg/L | 250 | ≤300 |
Chromium (total) | µg/L | 50 | ≤50 |
Conductivity | mS/m | 5−200 | ≤170 (25 °C) |
Copper | µg/L | 1000 | ≤2000 |
Fluoride | mg/L | 1.5 | ≤1.5 |
Iron | µg/L | 300 (total) | ≤2000 (chronic health), ≤300 (aesthetic) |
Lead | µg/L | 10 | ≤10 |
Magnesium | mg/L | 50 | |
Manganese | µg/L | 100 | ≤400 (chronic health), ≤100 (aesthetic) |
Mercury | µg/L | 1 | ≤6 |
Molybdenum | µg/L | 70 | |
Nickel | µg/L | 20 | ≤70 |
Nitrate | mg/L | 50 | ≤11 |
Nitrate+Nitrite | mg/L | ≤1 | |
Nitrite | mg/L | 3 | ≤0.9 |
pH (25 °C) | 6.5−8.5 | 5−9.7 | |
Phosphorus | µg/L | 100 | |
PAHs (total) | µg/L | 0.1 | |
Sodium | mg/L | 200 | ≤200 |
Sulfate | mg/L | 250 | ≤500 (acute health), ≤250 (aesthetic) |
Total dissolved solids | mg/L | 1000 | ≤1200 (aesthetic) |
Turbidity | NTU | 5 | ≤1 (operation), ≤5 (aesthetic) |
Uranium | µg/L | ≤30 | |
Zinc | mg/L | 3 | ≤5 |
Escherichia coli (E. coli) | MPN/100 mL | Not detected | |
Faecal coliforms | MPN/100 mL | 0−10 or absent | Not detected |
Heterotrophic plate count (HPC) | n/1 mL | ≤1000 | |
Total coliforms | MPN/100 mL | Absent | ≤10 |
Group | Variability Range-Standards Criteria |
---|---|
1 | Maximum measured concentrations of pollutant ci,max < standard Si_C |
2 | 75° percentile < Si_C ≤ 100° percentile of collected values of concentrations |
3 | 50° percentile < Si_C ≤ 75° percentile of collected values of concentrations |
4 | 25° percentile < Si_C ≤ 50° percentile of collected values of concentrations |
5 | Si_C ≤ 25° percentile of collected values of concentrations |
6 | Minimum measured concentrations ci,min > Si_C |
Group | South Africa | Mozambique | ||
---|---|---|---|---|
Parameter | % of Exceeding the Standard | Parameter | % of Exceeding the Standard | |
ci,max < Si | Uranium, zinc, ammonium, chloride, fluoride, nitrate, sulfate, Total dissolved solids | 0% | Ammonium, fluoride, nitrite, nitrate | 0% |
75° perc. < Si ≤ 100° perc | Arsenic, copper, manganese, nitrite | 17% 2% 9% 20% | Total dissolved solids calcium, magnesium, sodium, chloride, sulfate | 24% 20% 20% 20% 18% 10% |
50° perc. < Si ≤ 75° perc. | Mercury | 44% | - | |
25° perc. < Si ≤ 50° perc. | Cadmium, chromium, lead | 60% 75% 64% | Phosphorus | 67% |
Si ≤ 25° perc. | Aluminum, iron | 97% 76% | - | |
ci,min> Si | Nickel | 100% | Boron | 100% |
Comparison not possible | Phosphate, phosphorus, total nitrogen, PAHs | - | Potassium, bicarbonate, chlorite | - |
Group | South Africa | Mozambique | ||
---|---|---|---|---|
% of Exceeding the Standard | % of Exceeding the Standard | |||
ci,max < Si | Barium, cadmium, copper, zinc | 0% | Nitrite, ammonium | 0% |
75° perc. < Si ≤ 100° perc. | Boron, iron, manganese, sulfate | 7%, 2%, 6%, 18% | Fluoride, sulfate | 7%, 13% |
50° perc. < Si ≤ 75° perc. | Nickel, TDS | 44%, 46% | Nitrate | 33% |
25° perc. < Si ≤ 50° perc. | Chromium, uranium, chloride, fluoride | 51%, 56%, 62%, 59% | Magnesium | 67% |
Si ≤ 25° perc. | Sodium, nitrate | 77%, 78% | Calcium | 93% |
ci,min > Si | Arsenic, lead | 100%, 100% | Boron, sodium, chloride | 100%, 100%, 100% |
Comparison not possible | Bromine, calcium, lithium, magnesium, molybdenum, potassium, rubidium, silver, strontium, vanadium, bicarbonate, phosphate | Potassium, bicarbonate, chlorite |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verlicchi, P.; Grillini, V. Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Water 2020, 12, 305. https://doi.org/10.3390/w12010305
Verlicchi P, Grillini V. Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Water. 2020; 12(1):305. https://doi.org/10.3390/w12010305
Chicago/Turabian StyleVerlicchi, Paola, and Vittoria Grillini. 2020. "Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection" Water 12, no. 1: 305. https://doi.org/10.3390/w12010305
APA StyleVerlicchi, P., & Grillini, V. (2020). Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Water, 12(1), 305. https://doi.org/10.3390/w12010305