Assessment of Regional and Historical Climate Records for a Water Budget Approach in Eastern Colombia
Abstract
:1. Introduction
1.1. Overview
1.2. Components of an Approach for a Water Budget Analysis
1.2.1. Climate Data
1.2.2. Regional Downscaling
1.2.3. Water Budget Analysis
2. Study Area
2.1. Location and General Description
2.2. Atmospheric Circulation Patterns
2.3. Climate
3. Materials and Methods
3.1. Data Availability
3.2. Data Description
3.3. Consistency Analysis
4. Results
4.1. Data Availability
Representative Areas
4.2. Data Description
- Average monthly values for minimum and maximum temperature and relative humidity;
- Average accumulated monthly precipitation values;
- Average accumulated monthly precipitation values for each year in the mentioned period. These graphs are a good source to analyze seasonality, dry and wet periods for each of the studied areas;
- Probability density function with regards to each parameter. They offer a visual comparison of the variability of climate characteristics between the four selected areas.
4.3. Consistency Analysis
4.4. Complementary Data for a Water Budget Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Dibike, Y.B.; Coulibaly, P. Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol. 2004, 307, 145–163. [Google Scholar] [CrossRef]
- World Health Organization. Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s; World Health Organization: Geneva, Switzerland, 2014; Available online: http://www.who.int/globalchange/publications/quantitative-risk-assessment/en/ (accessed on 1 June 2019).
- Fann, N.; Brennan, T.; Dolwick, P.; Gamble, J.L.; Ilacqua, V.; Kolb, L.; Nolte, C.G.; Spero, T.L.; Ziska, L. Air Quality Impacts. In The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; Program GCR, Ed.; Global Change Research Program: Washington, DC, USA, 2016; pp. 69–98. [Google Scholar]
- Fang, H.; Beaudoing, H.K.; Rodell, M.; Teng, W.L.; Vollmer, B.E. Global Land Data Assimilation System (GLDAS) products, services and application from NASA Hydrology Data and Information Services Center (HDISC). In Proceedings of the ASPRS 2009 Annual Conference, Baltimore, MD, USA, 8–13 March 2009. [Google Scholar]
- Hamm, N.A.S.; Soares Magalhães, R.J.; Clements, A.C.A. Earth observation, spatial data quality, and neglected tropical diseases. PLoS Negl. Trop. Dis. 2015, 9, e0004164. [Google Scholar] [CrossRef] [PubMed]
- Colston, J.M.; Ahmed, T.; Mahopo, C.; Kang, G.; Kosek, M.; de Sousa Junior, F.; Shrestha, P.; Svensen, E.; Turab, A.; Zaitchik, B. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environ. Res. 2018, 165, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Mestre, O. A review of homogenisation procedures. In Proceedings of the International Workshop on Rescue and Digitization of Climate Records in the Mediterranean Basin; Brunet, M., Kuglitsch, F.G., Eds.; WCDMP No. 67/WMO-TD No. 1432; World Meteorological Organization: Geneva, Switzerland, 2008; pp. 41–46. [Google Scholar]
- Chattopadhyay, S.; Manoj, K. Climate change impact assessment on watershed hydrology: A comparison of three approaches. Am. J. Eng. Appl. Sci. 2014, 7, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Hay, L.E.; Clark, M.P.; Wilby, R.L.; Gutowski, W.J.; Leavesley, G.H.; Pan, Z.; Arritt, R.W.; Takle, E.S. Use of regional climate model output for hydrologic simulations. J. Hydrometeorol. 2002, 3, 571–590. [Google Scholar] [CrossRef]
- Guo, Z.; Dirmeyer, P.A.; Hu, Z.Z.; Gao, X.; Zhao, M. Evaluation of the second global soil wetness project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res. 2006, 111, D22S03. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C.; Chen, L.C.; Shukla, S.; Bohn, T.J.; Lettenmaier, D.P. Uncertainties in North American Land data assimilation systems over the contiguous United States. J. Hydrometeor. 2012, 13, 996–1009. [Google Scholar] [CrossRef]
- Hossain, F.; Anagnostou, E.N. Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv. Water Resour. 2005, 28, 1336–1350. [Google Scholar] [CrossRef]
- Maggioni, V.; Anagnostou, E.N.; Reichle, R.H. The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling. Hydrol. Earth Syst. Sci. 2012, 16, 3499–3515. [Google Scholar] [CrossRef] [Green Version]
- Materia, S.; Dirmeyer, P.A.; Guo, Z.; Alessandri, A.; Navarra, A. The sensitivity of simulated river discharge to land surface representation and meteorological forcings. J. Hydrometeor. 2010, 11, 334–351. [Google Scholar] [CrossRef]
- Nasonova, O.N.; Gusev, Y.M.; Kovalev, Y.E. Impact of uncertainties in meteorological forcing data and land surface parameters on global estimates of terrestrial water balance components. Hydrol. Processes 2011, 25, 1074–1090. [Google Scholar] [CrossRef]
- Elsner, M.M.; Gangopadhyay, S.; Pruitt, T.; Brekke, L.D.; Mizukami, N.; Clark, M.P. How does the choice of distributed meteorological data affect hydrologic model calibration and streamflow simulations? J. Hydrom. 2014, 15, 1384–1403. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; de Oliveira, E.; Pombosa, R.; Vauchel, P. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef] [Green Version]
- Montealegre, E.; Pavon, J. La variabilidad climatica interanual asociada al ciclo el niño-la niña–oscilacion del sur y su efecto en el patron pluviometrico de colombia. Meteorol. Colomb. 2000, 2, 7–21. [Google Scholar]
- Montealegre, E. Estudio de la Variabilidad Climática de la Precipitación en Colombia Asociada a Procesos Oceánicos y Atmosféricos de Meso y Gran Escala. Available online: http://institucional.ideam.gov.co/jsp/812 (accessed on 15 August 2019).
- Pabón, J.; Torres, G. Efecto climático de los fenómenos El Niño y La Niña en la Sabana de Bogotá. Meteorol. Colomb. 2006, 10, 86–99. [Google Scholar]
- Ruiz, D.; Moreno, A.; Gutierrez, E.; Zapata, P. Changing climate and endangered high mountain ecosystemsin Colombia. Sci. Total Environ. 2008, 398, 122–132. [Google Scholar] [CrossRef] [PubMed]
- WMO. Guidelines on Climate Data Management; WCDMP-No. 60; World Meteorological Organization (WMO): Geneva, Switzerland, 2007. [Google Scholar]
- Wilby, R.L.; Hassan, H.; Hanaki, K. Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol. 1998, 205, 1–19. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM-a decision support tool for the assessment of regional climate change impacts. Environ. Model Softw. 2002, 17, 147–159. [Google Scholar] [CrossRef]
- Xu, C. From GCMs to rivers flow: A review of downscaling methods and hydrologic modeling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. [Google Scholar] [CrossRef]
- Brown, C.; Greene, A.M.; Block, P.J.; Giannini, A. Review of Downscaling Methodologies for Africa Climate Applications; IRI Technical Report 08-05: IRI Downscaling Report; International Research Institute for Climate and Society, Columbia University: New York, NY, USA, 2008. [Google Scholar]
- Khan, M.S.; Coulibaly, P. Assessing hydrologic impact of climate change with uncertainty estimates: Bayesian neural network approach. J. Hydrometeorol. 2009, 11, 482–495. [Google Scholar] [CrossRef]
- Tavakol-Davani, H.; Nasseri, M.; Zahraie, B. Improved statistical downscaling of daily precipitation using SDSM platform and data-mining methodsInt. J. Climatol. 2012, 33, 2561–2578. [Google Scholar] [CrossRef]
- Samadi, S.; Ehteramian, K.; Sarraf, B.S. SDSM ability in simulate predictors for climate detecting over Khorasan province. Procedia Soc. Behav. Sci. 2011, 19, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Bernhofer, C.; Hülsmann, S. Regional climate projections for impact assessment studies in East Africa. Environ. Res. Lett. 2019, 14, 1–14. [Google Scholar] [CrossRef]
- Gulacha, M.M.; Mulungu, D.M.M. Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River basin Tanzania. Phys. Chem. Earth 2017, 100, 62–72. [Google Scholar] [CrossRef]
- Gonzalez-Rojí, S.J.; Wilby, R.L.; Sáenz, J.; Ibarra-Berastegi, G. Harmonized evaluation of daily precipitation downscaled using SDSM and WRF+WRFDA models over the Iberian Peninsula. Clim. Dyn. 2019, 53, 1413–1433. [Google Scholar] [CrossRef] [Green Version]
- Ajami, N.K.; Duan, Q.; Gao, X.; Sorooshian, S. Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results. J. Hydrometeorol. 2006, 7, 755–768. [Google Scholar] [CrossRef]
- Muller, R.A.; Grymes, J.M. Encyclopedia of World Climatology, Water Budget Analysis; Springer: Dordrecht, The Netherlands, 2005; Chapter 224. [Google Scholar]
- Cumming Cockburn Limited (Ed.) Water Budget Analysis on a Watershed Basis; Prepared for the Watershed Management Committee, Ontario Ministry of Natural Resources; USGS: Reston, VA, USA, 2001; pp. 239–255.
- Fung, F.; Lopez, A.; New, M. Modelling the Impact of Climate Change on Water Resources, 1st ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Barros, A.P. Orographic Precipitation, Freshwater Resources, and Climate Vulnerabilities in Mountainous Regions. Sci. Total Environ. 2008, 398, 122–132. [Google Scholar]
- Nakaegawa, T.; Vergara, W. First projection of climatological Mean River discharges in the Magdalena River Basin, Colombia, in a changing climate during the 21st century. Hydrol. Res. Lett. 2010, 4, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Ospina-Noreña, J.; Domínguez, C.; Vega-Rodríguez, E.; Darghan, A.; Rodríguez, L. Analysis of the water balance under regional scenarios of climate change for arid zones of Colombia. Atmósfera 2017, 30, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Saddique, N.; Bernhofer, C.; Kronenberg, R.; Usman, M. Downscaling of CMIP5 models output by using statistical models in a data scarce mountain environment (Mangla Dam Watershed), Northern Pakistan. Asia-Pac. J. Atmos. Sci. 2019, 55, 719. [Google Scholar] [CrossRef]
- Saraf, V.R.; Regulwar, D.G. Assessment of climate change for precipitation and temperature using statistical downscaling methods in Upper Godavari River Basin, India. J. Water Resour. Prot. 2016, 8, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Yusof, K.W.; Mustafa, M.R.; Mahmood, R.; Shaofeng, J. Projected changes in temperature and precipitation in Sarawak state of Malaysia for selected CMIP5 climate scenarios. Int. J. Sustain. Dev. Plan. 2017, 12, 1299–1311. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.A.; Klaus, J.; McHale, M.R. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol. 2007, 336, 155–170. [Google Scholar] [CrossRef]
- Candela, L.; Elorza, F.J.; Jiménez-Martínez, J.; von Igel, W. Global change and agricultural management options for groundwater sustainability. Comput. Electron. Agric. 2012, 86, 120–130. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.N.; Kuhn, M.; Nesgaard, T.I. Modelling of hydrological response to climate change in glacierized central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Ruth, M.; Coelho, D. Understanding and managing the complexity of urban systems under climate change. Clim. Policy 2007, 7, 317–336. [Google Scholar] [CrossRef]
- Werritty, A. Living with uncertainty: Climate change, river flows and water resource management in Scotland. Sci. Total Environ. 2002, 294, 29–40. [Google Scholar] [CrossRef]
- Brunet, M.; Jones, P. Data rescue initiatives: Bringing historical climate data into the 21st century. Clim. Res. 2011, 47, 29–40. [Google Scholar] [CrossRef]
Stations | Alta Guajira | Bajo Meta | Rio Catatumbo | Sabana de Bogota |
---|---|---|---|---|
N° Stations Precipitation | 25 | 42 | 60 | 39 |
N° Stations Max. Temperature | 3 | 3 | 14 | 12 |
N° Stations Min. Temperature | 4 | 3 | 16 | 26 |
N° Stations Relative Humidity | 3 | 9 | 13 | 10 |
Description | ||||
Climate | arid, desertic | humid | semihumid | semihumid, semiarid |
Area (km2) | 12,348 | 42,655 | 17,960 | 2245 |
Min. Elevation (m.a.s.l.) | 1 | 45 | 83 | 2540 |
Max. Elevation (m.a.s.l.) | 390 | 3520 | 1740 | 3800 |
Mean monthly max. temperature (°C) | 32.3 | 23.6 | 24.7 | 19.8 |
Mean monthly min. temperature (°C) | 24.8 | 12.6 | 16.1 | 8.2 |
Mean yearly precipitation (mm) | 346.8 | 2382.5 | 1447.9 | 832.4 |
Rainy seasons | May, October | June | May, October | June |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, O.; Bernhofer, C. Assessment of Regional and Historical Climate Records for a Water Budget Approach in Eastern Colombia. Water 2020, 12, 42. https://doi.org/10.3390/w12010042
Molina O, Bernhofer C. Assessment of Regional and Historical Climate Records for a Water Budget Approach in Eastern Colombia. Water. 2020; 12(1):42. https://doi.org/10.3390/w12010042
Chicago/Turabian StyleMolina, Oscar, and Christian Bernhofer. 2020. "Assessment of Regional and Historical Climate Records for a Water Budget Approach in Eastern Colombia" Water 12, no. 1: 42. https://doi.org/10.3390/w12010042
APA StyleMolina, O., & Bernhofer, C. (2020). Assessment of Regional and Historical Climate Records for a Water Budget Approach in Eastern Colombia. Water, 12(1), 42. https://doi.org/10.3390/w12010042