Grain Size and Pollen of Sediments in Wanghu Lake (Central China) Linked to Hydro-Environmental Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling
2.3. Precipitation Data in the Lake Catchment
2.4. Particle Size Analysis and Pollen Identification
2.5. Developing a Chronological Framework
2.6. Data Analysis
3. Results
3.1. Precipitation Measurementin the Catchment
3.2. Sediment Chronology
3.3. The Wanghu Lake Sedment Core
3.3.1. Pollen Record
3.3.2. Grain Size Analysis
3.3.3. Relationships between Pollen and Grain Size
3.3.4. Relationships between Precipitation and Grain Size
4. Discussion
4.1. Wanghu Lake and Watershed Evolution over the Last 90 Years
4.2. Sediment Cores as Archives of Historical Hydroclimatic Changes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nilsson, C.; Berggren, K. Alterations of Riparian ecosystems caused by river regulation. Bioscience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Benito, G.; Lang, M.; Barriendos, M.; Llasat, M.C.; Frances, F.; Ouarda, T.; Thorndycraft, V.R.; Enzel, Y.; Bardossy, A.; Coeur, D.; et al. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat. Hazards 2004, 31, 623–643. [Google Scholar]
- Rodbell, D.T.; Seltzer, G.O.; Anderson, D.M.; Abbott, M.B.; Enfield, D.B.; Newman, J.H. An 15,000-year record of El Nino-driven alluviation in southwestern Ecuador. Science 1999, 283, 516–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.; Bierman, P.; Lini, A.; Davis, P.T.; Southon, J. Reconstructing lake and drainage basin history using terrestrial sediment layers: Analysis of cores from a post-glacial lake in New England. J. Paleolimnol. 2002, 28, 219–236. [Google Scholar] [CrossRef]
- Noren, A.J.; Bierman, P.R.; Steig, E.J.; Lini, A.; Southon, J. Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 2002, 419, 821–824. [Google Scholar] [CrossRef]
- Shimada, T.; Kashiwaya, K.; Hyodo, M.; Masuzawa, T. Hydro-environmental fluctuation in a lake-catchment system during the late Holocene inferred from Lake Yogo sediments. Trans. Jpn. Geomorphol. Union 2002, 23, 415–431. [Google Scholar]
- Nahm, W.H.; Lee, G.H.; Yang, D.Y.; Kim, J.Y.; Kashiwaya, K.; Yamamoto, M.; Sakaguchi, A. A 60-year record of rainfall from the sediments of Jinheung Pond, Jeongeup, Korea. J. Paleolimnol. 2010, 43, 489–498. [Google Scholar] [CrossRef]
- Yi, C.L.; Liu, H.F.; Neil, L.R.; Yang, H.; Ni, L.Y.; Xie, P. Sediment sources and the flood record from Wanghu lake, in the middle reaches of the Yangtze River. J. Hydrol. 2006, 329, 568–576. [Google Scholar] [CrossRef]
- Itono, T.; Kashiwaya, K.; Sakaguchi, A. Disastrous flood events found in lacustrine sediments from Lake Biwa. Trans. Jpn. Geomorphol. Union 2012, 33, 453–468. [Google Scholar]
- Sun, Q.L.; Zhou, J.; Xiao, J.L. Grain-size characteristics of Lake Daihai sediments and its paleaoenvironment significance. Mar. Geol. Quat. Geol. 2001, 21, 93–95, (In Chinese with English abstract). [Google Scholar]
- Liu, X.Q.; Wang, S.M.; Shen, J. The grainsize of the core QH2000 in Qinghai Lake and its implication for paleoclimate and paleoenvironment. J. Lake Sci. 2003, 15, 112–117, (In Chinese with English abstract). [Google Scholar]
- Kashiwaya, K.; Yamamoto, A.; Fukuyama, K. Time variations of erosional force and grain size in Pleistocene lake sediments. Quat. Res. 1987, 28, 61–68. [Google Scholar] [CrossRef]
- Peng, Y.J.; Xiao, J.L.; Nakamura, T.; Liu, B.L.; Inouchi, Y. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth Planet. Sci. Lett. 2005, 233, 467–479. [Google Scholar] [CrossRef]
- Jiang, Q.F.; Shen, J.; Liu, X.Q.; Ji, J.F. Environmental changes recorded by lake sediments from Lake Jili, Xinjiang during the past 2500 years. J. Lake Sci. 2010, 22, 119–126, (In Chinese with English abstract). [Google Scholar]
- Mason, I.M.; Guzkowska, M.A.J.; Rapley, C.G.; Street-Perrott, F.A. The response of lake levels and areas to climatic change. Clim. Chang. 1994, 27, 161–197. [Google Scholar] [CrossRef]
- Hibbert, A.R. Forest treatment effects on water yield. In Proceedings of the International Symposium of Forest Hydrauli, State College, PA, USA, 29 August–10 September 1965; Sopper, W.E., Lull, H.W., Eds.; Oxford: Pergamon, Turkey, 1967; pp. 527–543. [Google Scholar]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrology of Moist Tropical Forests and Conversion: A State of Knowledge Review; UNESCO-IHP Publication of the Humid Tropics Programme: Paris, France, 1990; p. 224. [Google Scholar]
- Stednick, J.D. Monitoring the effects of timber harvest on annual water yield. J. Hydrol. 1996, 176, 79–95. [Google Scholar] [CrossRef]
- Frey, D.G. The rationale of paleolimnology. Mitt. Int. Ver. Limnol. 1969, 17, 7–18. [Google Scholar] [CrossRef]
- Oldfield, F. Lakes and their drainage basins as units of sediment-based ecological study. Prog. Phys. Geogr. 1978, 1, 460–504. [Google Scholar] [CrossRef]
- Pennington, W. Records of a lake’s life in time: The sediments. Hydrobiologia 1981, 79, 197–219. [Google Scholar] [CrossRef]
- Binford, M.W.; Deevey, E.S.; Crisman, T.L. Paleolimnology: An historical perspective on lacustrine ecosystems. Annu. Rev. Ecol. Syst. 1983, 14, 255–286. [Google Scholar] [CrossRef]
- Binford, M.W.; Brenner, M.; Whitmore, T.J.; Higuera-Gundy, A.; Deevey, E.S.; Leyden, B.W. Ecosystems, paleoecology, and human disturbance in subtropical and tropical America. Quat. Sci. Rev. 1987, 6, 115–128. [Google Scholar] [CrossRef]
- Deevey, E.S. Stress, strain, and stability of lacustrine ecosystems. In Lake Sediments and Environmental History; Haworth, E.Y., Lund, J.W.G., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 1984; pp. 208–229. [Google Scholar]
- McAndrews, J.H.; Power, D.M. Palynology of the Great Lakes: The surface sediments of Lake Ontario. Canadian. J. Earth Sci. 1973, 10, 777–792. [Google Scholar] [CrossRef]
- Brown, A.G. The potential use of pollen in the identification of suspended sediment sources. Earth Surf. Proc. Land. 1985, 10, 27–32. [Google Scholar] [CrossRef]
- Brown, A.G.; Carpenter, R.G.; Walling, D.E. Monitoring fluvial pollen transport, its relationship to catchment vegetation and implications for palaeoenvironmental studies. Rev. Palaeobot. Palyno. 2008, 147, 60–76. [Google Scholar] [CrossRef] [Green Version]
- David, C.; Roberts, N. Vegetation change and pollen recruitment in a lowland lake catchment Groby Pool, Leics (England). Hydrobiologia 1990, 214, 305–310. [Google Scholar] [CrossRef]
- Traverse, A. Organic fluvial sediment—Palynomorphs and palynodebris in the lower Trinity River, Texas. Ann. Mo. Bot. Gard. 1992, 79, 110–125. [Google Scholar] [CrossRef]
- Walling, D.E. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 2005, 344, 159–184. [Google Scholar] [CrossRef]
- Shen, H.D.; Li, C.H.; Wan, H.W.; Tong, G.B.; Liu, J.S.; Johnson, D. Relationships between vegetation and stomata, and between vegetation and pollen surface soil in Yunnan, Southwest China. Chin. Sci. Bull. 2013, 58, 1775. [Google Scholar] [CrossRef] [Green Version]
- Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 2007, 17, 229–241. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation II: All you need is LOVE. Holocene 2007, 17, 243–257. [Google Scholar] [CrossRef]
- Herzschuh, U.; Birks, H.J.B.; Mischke, S.; Zhang, C.; Boehner, J. A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. J. Biogeogr. 2010, 37, 752–766. [Google Scholar] [CrossRef]
- Wang, Y.M. The Vegetation of Hubei. J. Wuhan Bot. Res. 1985, 1, 47–54, (In Chinese with English abstract). [Google Scholar]
- Wang, S.M.; Dou, H.S. Chines Lakes; Science Press: Beijing, China, 1998; pp. 200–201. [Google Scholar]
- Fægri, K.; Iverson, J. Textbook of Pollen Analysis, 4th ed.; John Wiley and Sons Inc.: London, UK, 1989. [Google Scholar]
- Wang, F.X. Pollen Flora of China; Science Press: Beijing, China, 1997. [Google Scholar]
- Institute of Botany, The Chinese Academy of Sciences. Angiosperm Pollen Flora of Tropic and Subtropic China; Science Press: Beijing, China, 1982. [Google Scholar]
- Huang, T.C. Flora of Taiwan, 2nd ed.; Sandos Chromagraph Printing Company, Ltd.: Taiwan, 1994. [Google Scholar]
- Appleby, P.G. Chronostratigraphic techniques in recent sediments. In Tracking Environmental Change Using Lake Sediments; Last, W., Smol, J., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 171–203. [Google Scholar]
- Yao, S.C.; Xue, B.; Li, S.J.; Liu, J.F.; Xia, W.L. Sedimentation rates in Honghu, Chaohu and Taihu Lakes in the middle and lower reaches of the Yangtze River. Resour. Environ. Yangtze River 2006, 15, 569–572, (In Chinese with English abstract). [Google Scholar]
- Xu, J.Y.; Wan, G.J.; Wang, C.S.; Huang, R.G.; Chen, J.G. Vertical distribution of 210Pb and 137Cs and their dating in resent sediments of Lugu Lake and Erhai Lake, Yunnan Province. J. Lake Sci. 1999, 11, 110–116, (In Chinese with English abstract). [Google Scholar]
- Zhang, C.J.; Cao, J.; Lei, Y.B.; Shang, H.M. The Chronological Characteristics of Bosten Lake Holocene Sediment Environment in Xinjiang, China. Acta Sed. Sin. 2004, 22, 494–499, (In Chinese with English abstract). [Google Scholar]
- Wang, G.J. 137Cs dating by annual distinguish for recent sedimentation: Samples from Erhai Lake and Hongfeng Lake. Quat. Sci. 1999, 1, 73–80, (In Chinese with English abstract). [Google Scholar]
- Editorial Board of Yangxin Country. History Documentation of Yangxin Country; Xinhua Publishing House: Beijing, China, 1993. [Google Scholar]
- Xiang, L.; Lu, X.X.; Higgitt, D.L.; Wang, S.M. Recent lake sedimentation in the middle and lower Yangtze basin inferred from 137Cs and 210Pb measurements. J. Asian Earth Sci. 2002, 21, 77–86. [Google Scholar] [CrossRef]
- Zhang, E.L.; Jones, R.; Langdon, P.; Yang, X.; Shen, J. A 150-year record of recent changes in human activity and eutrophication of Lake Wushan from the middle reach of the Yangtze River, China. J. Limnol. 2010, 69, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Dong, X.; Yang, X.; Chen, X.; Zhang, Q.; Liu, Q.; Wang, R.; Yao, M.; Davidson, A.T.; Jeppesen, E. Recent sedimentation rates of shallow lakes in the middle and lower reaches of the Yangtze River: Patterns, controlling factors and implications for lake management. Water 2017, 9, 617. [Google Scholar] [CrossRef]
- Xue, B.; Yao, S. Recent sedimentation rates in lakes in lower Yangtze River basin. Quat. Int. 2011, 244, 248–253. [Google Scholar] [CrossRef]
- Cao, X.; Jin, X.B.; Wang, J.S.; Miao, L.J.; Zhou, Y.K. Reconstruction and change analysis of cropland data of China in recent 300 years. Acta Geograph. Sin. 2014, 69, 896–906. [Google Scholar]
- Bábek, O.; Faměra, M.; Hilscherová, K.; Kalvoda, J.; Dobrovolný, P.; Sedláček, J.; Machát, J.; Holoubek, I. Geochemical traces of flood layers in thefluvial sedimentary archive; implications for contamination history analyses. Catena 2011, 87, 281–290. [Google Scholar] [CrossRef]
- Daessle, L.W.; Lugo-Ibarra, K.C.; Tobschall, H.J.; Melo, M.; Gutierrez-Galindo, E.A.; GarciaHernandez, J.; Alvarez, L.G. Accumulation of As, Pb, and Cu Associated with the Recent Sedimentary Processes in the Colorado Delta, South of the United States-Mexico Boundary. Arch. Environ. Contam. Toxicol. 2009, 56, 680–692. [Google Scholar] [CrossRef]
- Ferrand, E.; Eyrolle, F.; Radakovitch, O.; Provansal, M.; Dufour, S.; Vella, C.; Raccasi, G.; Gurriaran, R. Historical levels of heavy metals and artificial radionuclides reconstructed from overbank sediment records in lower Rhone River (South-EastFrance). Geochim. Cosmochim. Acta 2012, 82, 163–182. [Google Scholar] [CrossRef]
- Wolfe, B.B.; Hall, R.I.; Last, W.M.; Edwards, W.D.; English, M.C.; Karst-Riddoch, T.L.; Paterson, A.; Palmini, R. Reconstruction of multi-century flood histories from oxbow lake sediments, Peace-Athabasca Delta, Canada. Hydrol. Process. 2006, 20, 4131–4153. [Google Scholar] [CrossRef]
- Harrison, J.; Heijnis, H.; Caprarelli, G. Historical pollution variability from abandoned mine sites, Greater Blue Mountains World Heritage Area, New South Wales, Australia. Environ. Geol. 2003, 43, 680–687. [Google Scholar] [CrossRef]
- Michael, F.R.; David, A.H.; Mark, B.; Jason, H.C.; Jonathan, B.M.; Flavio, S.A.; Daniel, A.; Thomas, P.G. Influence of vegetation change on watershed hydrology: Implications for paleoclimatic interpretation of lacustrine δ18O records. J. Paleolimnol. 2002, 27, 117–131. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Yu, Z.; Yu, G.; Shi, X. Grain Size and Pollen of Sediments in Wanghu Lake (Central China) Linked to Hydro-Environmental Changes. Water 2020, 12, 45. https://doi.org/10.3390/w12010045
Shen H, Yu Z, Yu G, Shi X. Grain Size and Pollen of Sediments in Wanghu Lake (Central China) Linked to Hydro-Environmental Changes. Water. 2020; 12(1):45. https://doi.org/10.3390/w12010045
Chicago/Turabian StyleShen, Huadong, Zhongbo Yu, Ge Yu, and Xiaoli Shi. 2020. "Grain Size and Pollen of Sediments in Wanghu Lake (Central China) Linked to Hydro-Environmental Changes" Water 12, no. 1: 45. https://doi.org/10.3390/w12010045
APA StyleShen, H., Yu, Z., Yu, G., & Shi, X. (2020). Grain Size and Pollen of Sediments in Wanghu Lake (Central China) Linked to Hydro-Environmental Changes. Water, 12(1), 45. https://doi.org/10.3390/w12010045