The Periodic Response of Tidal Flat Sediments to Runoff Variation of Upstream Main River: A Case Study in the Liaohe Estuary Wetland, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Data Analysis
2.3.1. Sedimentary Dating
2.3.2. Relationship between the Sediment Deposition Characteristics and Runoff
- (1)
- The flow in the flood season: This refers to the river flow in the relatively concentrated rainfall season of each year, which was calculated according to the daily flow data of the river hydrological observation section. The flood season of Liaohe River Basin ranged from June to September in each year. The formula was as follows:
- (2)
- The mean annual flow rate: This refers to the average value of river flow during each year, which was calculated based on the daily flow data of river hydrological observation sections. The formula was as follow:
- (3)
- The annual sediment discharge: This refers to the total sediment transported through the river hydrological observation section in one year, which was calculated from the daily sediment concentration data of river hydrological observation sections. The formula was as follows:
2.3.3. Periodic Relationship between Sediment and Runoff
3. Results
3.1. Sedimentary History of the Tidal Flats in the Liaohe Estuary Wetland
3.2. Relationship between Sediment Deposition in the Tidal Flats of the Liaohe Estuary Wetland and the Runoff from the Liaohe River
3.3. Sediment Deposition and Runoff Cycles
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bianchi, T.S.; Allison, M.A. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc. Natl. Acad. Sci. USA 2009, 106, 8085–8092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Haen, K.; Verstraeten, G.; Degryse, P. Fingerprinting historical fluvial sediment fluxes. Prog. Phys. Geogr. 2012, 36, 154–186. [Google Scholar] [CrossRef] [Green Version]
- Hancock, G.; Revill, A. Erosion source discrimination in a rural Australian catchment using compound-specific isotope analysis (CSIA). Hydrol. Process. 2013, 27. [Google Scholar] [CrossRef]
- Manjoro, M.; Rowntree, K.; Kakembo, V.; Foster, I.; Collins, A.L. Use of sediment source fingerprinting to assess the role of subsurface erosion in the supply of fine sediment in a degraded catchment in the Eastern Cape, South Africa. J. Environ. Manag. 2016, 194, 27. [Google Scholar] [CrossRef]
- Thomas, S.; Ridd, P.V. Review of methods to measure short time scale sediment accumulation. Mar. Geol. 2004, 207, 95–114. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, M.; Walling, D.E.; Zhang, F.; Zhang, J. Using check dam deposits to investigate recent changes in sediment yield in the Loess Plateau, China. Glob. Planet. Chang. 2017, 152, 88–98. [Google Scholar] [CrossRef]
- van der Waal, B.; Rowntree, K.; Pulley, S. Flood bench chronology and sediment source tracing in the upper Thina catchment, South Africa: The role of transformed landscape connectivity. J. Soils Sediments 2015, 15, 2398–2411. [Google Scholar] [CrossRef]
- Walling, D.E. The evolution of sediment source fingerprinting investigations in fluvial systems. J. Soils Sediments 2013, 13, 1658–1675. [Google Scholar] [CrossRef]
- Abril, J.M. Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies. Environ. Pollut. 2004, 129, 31–37. [Google Scholar] [CrossRef]
- Wan, G.; Lin, W.; Huang, R.; Chen, Z. The Yearly Characteristics and Erosion Tracing of the Vertical Section of 137Cs in the Sediment of Hongfeng Lake. Chin. Sci. Bull. 1990, 35, 1487–1490. [Google Scholar]
- McHenry, J.R.; Cooper, C.M.; Ritchie, J.C. Sedimentation in Wolf Lake, Lower Yazoo River Basin, Mississippi. J. Freshw. Ecol. 1981, 1, 547–558. [Google Scholar] [CrossRef]
- Ritchie, J.C.; McHenry, J.R. Application of Radioactive Fallout Cesium-137 for Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review. J. Environ. Qual. 1990, 19, 215. [Google Scholar] [CrossRef] [Green Version]
- Zapata, F. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
- Foster, I.D.L.; Lees, J.A. Changing headwater suspended sediment yields in the LOIS catchments over the last century: A paleolimnological approach. Hydrol. Process. 1999, 13, 17. [Google Scholar] [CrossRef]
- Appleby, P.G.; Oldfield, F.; Thompson, R.; Huttunen, P.; Tolonen, K. 210Pb dating of annually laminated lake sediments from Finland. Nature 1979, 280, 53–55. [Google Scholar] [CrossRef]
- Huh, C.-A.; Su, C.-C. Distribution of fallout radionuclides (7Be, 137Cs, 210Pb and 239,240Pu) in soils of Taiwan. J. Environ. Radioact. 2004, 77, 87–100. [Google Scholar] [CrossRef]
- Wan, G.; Chen, J.; Xu, S.; Wu, F.; Santschi, P.H. Using sudden increases in 210Pb sediment flux to investigate changes in lake productivity: The case of Chenghai lake, Yunnan, China. Sci. China (Ser. D) 2004, 34, 154–162. [Google Scholar]
- Xia, W.; Xue, B. The 210Pb and 137Cs chronological measurement on sedimentation rat e of Xiaolongwan, Ji lin. Quat. Sci. 2004, 24, 124–125. [Google Scholar]
- Zhang, X. Discussion on Interpretations of 137Cs Depth Distribution Profiles of Lake Deposits. J. Mt. Sci. 2005, 23, 294–299. [Google Scholar]
- Lu, X. 210Pb and 137Cs Methods and the Application in Offshore Waters Research; Science China Press: Beijing, China, 2014; ISBN 978-7-03-040592-0. [Google Scholar]
- Matisoff, G. Activities and geochronology of 137 Cs in lake sediments resulting from sediment resuspension. J. Environ. Radioact. 2017, 167, 222–234. [Google Scholar] [CrossRef]
- Lin, J.; Huang, Y.; Wang, M.K.; Jiang, F.; Zhang, X.; Ge, H. Assessing the sources of sediment transported in gully systems using a fingerprinting approach: An example from South-east China. Catena 2015, 129, 9–17. [Google Scholar] [CrossRef]
- Karunarathna, H.; Reeve, D.; Spivack, M. Long-term morphodynamic evolution of estuaries: An inverse problem. Estuar. Coast. Shelf Sci. 2008, 77, 385–395. [Google Scholar] [CrossRef]
- Lin, J.; Huang, Y.; Zhao, G.; Jiang, F.; Wang, M.; Ge, H. Flow-driven soil erosion processes and the size selectivity of eroded sediment on steep slopes using colluvial deposits in a permanent gully. CATENA 2017, 157, 47–57. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, G.; Wei, J.; Jiang, F.; Wang, M.K.; Huang, Y. Mulching effects on erosion from steep slopes and sediment particle size distributions of gully colluvial deposits. Catena 2018, 160, 57–67. [Google Scholar] [CrossRef]
- Naden, P.S.; Murphy, J.F.; Old, G.H.; Newman, J.; Scarlett, P.; Harman, M.; Duerdoth, C.P.; Hawczak, A.; Pretty, J.L.; Arnold, A. Understanding the controls on deposited fine sediment in the streams of agricultural catchments. Sci. Total Environ. 2016, 547, 366–381. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Collins, M.; Mclaren, P.; Bowles, D. A critique of the “McLaren Method” for defining sediment transport paths; discussion and reply. J. Sediment. Res. 1991, 61, 143–147. [Google Scholar] [CrossRef]
- Mclaren, P.; Bowles, D. The Effects of Sediment Transport on Grain-Size Distributions. J. Sediment. Petrol. 1985, 55, 457–470. [Google Scholar]
- Pulley, S.; Van der Waal, B.; Rowntree, K.; Collins, A.L. Colour as reliable tracer to identify the sources of historically deposited flood bench sediment in the Transkei, South Africa: A comparison with mineral magnetic tracers before and after hydrogen peroxide pre-treatment. Catena 2018, 160, 242–251. [Google Scholar] [CrossRef]
- Tanaka, K.; Kondo, H.; Sakaguchi, A.; Takahashi, Y. Cumulative history recorded in the depth distribution of radiocesium in sediments deposited on a sandbar. J. Environ. Radioact. 2015, 150, 213–219. [Google Scholar] [CrossRef]
- Shen, H.; Zhu, J.; Wu, H. Land-Sea Interaction Interface of the Yangtze River Estuary; Chian Ocean Press: Beijing, China, 2009; ISBN 978-7-5027-7216-1. [Google Scholar]
- Su, F.; Zhang, T.; Li, H. Mechanism of Desertification and Ecological Restoration of Liaohe River Basin; China Science Press: Beijing, China, 2019; ISBN 978-7-03-061208-3. [Google Scholar]
- Liu, D.; Hu, K.; Zhao, X.; Zhang, K.; Gong, X.; Tang, G. The research of sedimentary environment of Gaizhou Shoal at Liaohe Estuary in recent 30 year. Acta Oceanol. Sin. 2017, 39, 131–142. [Google Scholar]
- Song, Y.; Zhan, X.; Wang, Y. Modern sedimentary characteristics of the estuary area in the northern part of Liaodong Bay. Acta Oceanol. Sin. 1997, 19, 145–149. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Anderson, R.F.; Schiff, S.L.; Hesslein, R.H. Determining Sediment Accumulation and Mixing Rates Using 210 Pb, 137 Cs, and Other Tracers: Problems Due to Postdepositional Mobility or Coring Artifacts. Can. J. Fish. Aquat. Sci. 1987, 44, s231–s250. [Google Scholar] [CrossRef]
- Blebea-Apostu, A.M.; Radulescu, I.; Margineanu, R.; Ionita, I.; Popescu, I.V.; Hulubei, H. Assessment of sedimentation rate through the use of anthropogenic 137cs radionuclide. Rom. Rep. Phys. 2012, 64, 211–220. [Google Scholar]
- Kusumgar, S.; Agrawal, D.P.; Bhandari, N.; Deshpande, R.D.; Raina, A.; Sharma, C.; Yadava, M.G. Lake Sediments from the Kashmir Himalayas: Inverted 14C Chronology and Its Implications. Radiocarbon 1992, 34, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Liaohe River water and sediment source areas effects on downstream sediment deposition. J. Yangtze River Sci. Res. Inst. 2010, 27, 4–7. [Google Scholar]
- Moss, B. Tracking Environmental Change Using Lake Sediments. Freshw. Biol 2004, 49, 678–679. [Google Scholar] [CrossRef]
- Appleby, P.G.; Oldfield, F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 1978, 5, 1–8. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Chang. 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Santikari, V.P.; Murdoch, L.C. Effects of construction-related land use change on streamflow and sediment yield. J. Environ. Manag. 2019, 252, 109605. [Google Scholar] [CrossRef]
- Shen, B.; Wu, J.; Zhou, J.; Wang, J.; Yang, Y.; Zhang, Y.; Qian, X. Tracking recent environmental changes in Lake Wanghu, China: A multivariate analysis of lipid biomarkers in sediments. Hydrobiologia 2019, 829, 281–290. [Google Scholar] [CrossRef]
- Gamvroudis, C.; Nikolaidis, N.P.; Tzoraki, O.; Papadoulakis, V.; Karalemas, N. Water and sediment transport modeling of a large temporary river basin in Greece. Sci. Total Environ. 2015, 508, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Li, M.; Dai, S.B.; Liu, Z.; Zhang, J.; Ding, P.X. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bi, N.; Wang, H.; Yang, Z. Recent changes in the erosion–accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont. Shelf Res. 2014, 90, 70–78. [Google Scholar] [CrossRef]
- Wang, H.; Bi, N.; Saito, Y.; Wang, Y.; Sun, X.; Zhang, J.; Yang, Z. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary. J. Hydrol. 2010, 391, 302–313. [Google Scholar] [CrossRef]
- Ge, Y.U. High-resolution Records of Lacustrine Sedimentology and Palynology Responding to Changes in Climate and Hydrology. Acta Sedimentol. Sin. 2011, 29, 118–124. [Google Scholar]
- Jia, J.; Gao, S.; Gao, J.; Pan, S.; Wang, A. Linkage of Grain Size Information with River Sediment Discharge and Estuarine Deposition at the Pearl River Estuary. Adv. Mar. Sci. 2005, 23, 297–304. [Google Scholar]
- Luz Clara, M.; Simionato, C.G.; D’Onofrio, E.; Fiore, M.; Moreira, D. Variability of tidal constants in the Río de la Plata estuary associated to the natural cycles of the runoff. Estuar. Coast. Shelf Sci. 2014, 148, 85–96. [Google Scholar] [CrossRef]
Indexes of Runoff Discharge | Frequency (year−1) | Periodicity (year) | Indexes of Sediment Particle Size | Frequency (year−1) | Periodicity (year) |
---|---|---|---|---|---|
Flow in flood season | 0.07 | 14.3 | Mean particle size | 0.07 | 14.30 |
0.28 | 3.60 | 0.14 | 7.10 | ||
0.38 | 2.60 | 0.22 | 4.50 | ||
Mean annual flow | 0.17 | 5.90 | Median size | 0.07 | 14.30 |
0.28 | 3.60 | 0.17 | 5.90 | ||
0.41 | 2.40 | 0.31 | 3.20 | ||
Annual sediment discharge | 0.17 | 5.90 | |||
0.28 | 3.60 | ||||
0.41 | 2.40 |
Index | 137Cs Activity | Specific Surface Area | Median Size | Mean Particle Size | Clay |
---|---|---|---|---|---|
Clay | 0.510 | 0.902 ** | −0.607 | −0.622 | 1 |
Flow in flood season | −0.652 | −0.658 | −0.645 | −0.647 | −0.627 |
Mean annual flow | −0.590 | 0.540 | −0.781 | −0.718 | −0.523 |
Annual sediment discharge | –0.883 ** | −0.065 | 0.856 * | 0.847 * | −0.768 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, L.; Su, F.; Wang, T.; Gao, P. The Periodic Response of Tidal Flat Sediments to Runoff Variation of Upstream Main River: A Case Study in the Liaohe Estuary Wetland, China. Water 2020, 12, 61. https://doi.org/10.3390/w12010061
Li H, Li L, Su F, Wang T, Gao P. The Periodic Response of Tidal Flat Sediments to Runoff Variation of Upstream Main River: A Case Study in the Liaohe Estuary Wetland, China. Water. 2020; 12(1):61. https://doi.org/10.3390/w12010061
Chicago/Turabian StyleLi, Haifu, Lifeng Li, Fangli Su, Tieliang Wang, and Peng Gao. 2020. "The Periodic Response of Tidal Flat Sediments to Runoff Variation of Upstream Main River: A Case Study in the Liaohe Estuary Wetland, China" Water 12, no. 1: 61. https://doi.org/10.3390/w12010061
APA StyleLi, H., Li, L., Su, F., Wang, T., & Gao, P. (2020). The Periodic Response of Tidal Flat Sediments to Runoff Variation of Upstream Main River: A Case Study in the Liaohe Estuary Wetland, China. Water, 12(1), 61. https://doi.org/10.3390/w12010061