Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin
Abstract
:1. Introduction
- 1.
- Analyze the unstable variations in the climatic factors and the land-use transfer ratio in the study region between the different periods.
- 2.
- Develop seven simulation scenarios to separate the impacts of climatic variations and land-use changes on the river runoff, surface runoff (SurQ), groundwater flow (GWQ), soil water (SW), lateral flow (LATQ), and evapotranspiration (ET) in the ARB and identify the different extents and directions of their effects over several time periods.
- 3.
- Utilize partial least squares regression (PLSR) and ridge regression (RR) to evaluate further the effects of changes in the individual land-use types or climatic factors on the hydrologic components (SurQ, GWQ, and LATQ) based on separate impact modeling scenario results.
2. Study Area
3. Materials and Methods
3.1. Datasets
3.2. Analytical Strategy
3.2.1. Simulation Period Division
3.2.2. Hydrological Modeling
3.2.3. Climate and Land-Use Scenarios
3.2.4. Statistical Analysis
4. Results
4.1. Model Calibration and Validation
4.2. Climate Variability
4.3. Land-Use Change
4.4. Impacts of Climate and Land-Use Changes on River Runoff at Different Sites over the Four Periods
4.5. Impacts of Climate and Land-Use Changes on Five Hydrological Variables over the Four Periods
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, F.; Zhang, G.; Xu, J.Y. Separating the Impacts of Climate Variation and Human Activities on Runoff in the Songhua River Basin, Northeast China. Water 2014, 6, 3320–3338. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, W.-Z.; Zhang, X.-C.; Zheng, F.-L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Butterfield, D.; Wade, A.J. Impacts of climate change on in-stream nitrogen in a lowland chalk stream: An appraisal of adaptation strategies. Sci. Total Environ. 2006, 365, 260–273. [Google Scholar] [CrossRef]
- Dong, L.; Xiong, L.; Yu, K.; Li, S. Research advances in effects of climate change and human activities on hydrology. Adv. Water Sci. 2012, 23, 278–285. (In Chinese) [Google Scholar] [CrossRef]
- Dong, L.; Zhang, G. Review of the impacts of climate change on wetland ecohydrology. Adv. Water Sci. 2011, 22, 429–436. (In Chinese) [Google Scholar]
- Dong, L.; Zhang, G. The dynamic evolvement and hydrological driving factors of marsh in Nenjiang River basin. Adv. Water Sci. 2013, 24, 177–183. (In Chinese) [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y.J. Spatiotemporal variability of climate and streamflow in the Songhua River Basin, northeast China. J. Hydrol. 2014, 514, 53–64. [Google Scholar] [CrossRef]
- Guse, B.; Kail, J.; Radinger, J.; Schroder, M.; Kiesel, J.; Hering, D.; Wolter, C.; Fohrer, N. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Sci. Total Environ. 2015, 533, 542–556. [Google Scholar] [CrossRef]
- Liu, X.-F.; Ren, L.; Yuan, F.; Singh, V.; Fang, X.; Yu, Z.; Zhang, W. Quantifying the effect of land use and land cover changes on green water and blue water in northern part of China. Hydrol. Earth Syst. Sci. 2009, 13, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Putro, B.; Kjeldsen, T.R.; Hutchins, M.G.; Miller, J. An empirical investigation of climate and land-use effects on water quantity and quality in two urbanising catchments in the southern United Kingdom. Sci. Total Environ. 2016, 548–549, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serpa, D.; Nunes, J.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.; Moreira, M.; Corte-Real, J.; Keizer, J. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci. Total Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trang, N.T.T.; Shrestha, S.; Shrestha, M.; Datta, A.; Kawasaki, A. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Sci. Total Environ. 2017, 576, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z. Hydrological models: Past, Present and Future. J. Beijing Norm. Univ. (Nat. Sci.) 2010, 46, 278–289. (In Chinese) [Google Scholar]
- Zhang, A.J.; Zhang, C.; Chu, J.G.; Fu, G.B. Human-Induced Runoff Change in Northeast China. J. Hydrol. Eng. 2015, 20, 13. [Google Scholar] [CrossRef]
- Dai, C.; Wang, S.; Li, Z.; Zhang, Y.; Gao, Y.; Li, C. Review on hydrological geography in Heilongjiang River Basin. Acta Geogr. Sin. 2015, 70, 1823–1834. (In Chinese) [Google Scholar] [CrossRef]
- Yan, B.; Xia, Z.; Huang, F.; Guo, L.; Zhang, X. Climate Change Detection and Annual Extreme Temperature Analysis of the Amur River Basin. Adv. Meteorol. 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Novorotskii, P. Climate changes in the Amur River basin in the last 115 years. Russ. Meteorol. Hydrol. 2007, 32, 102–109. [Google Scholar] [CrossRef]
- Ganzei, S.S.; Yermoshin, V.V.; Mishina, N.V. The dynamics of land use within the Amur basin in the 20th century. Geogr. Nat. Res. 2010, 31, 18–24. [Google Scholar] [CrossRef]
- Cui, M. Status quo of Wetlands of Heilongjiang River Valley and the Protection. For. Inventory Plan. 2006, 1, 75–78. (In Chinese) [Google Scholar] [CrossRef]
- Ismaiylov, G.K.; Fedorov, V. Analysis of long-term variations in the Volga annual runoff. Water Res. 2001, 28, 469–477. [Google Scholar] [CrossRef]
- Ogi, M.; Tachibana, Y. Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Haruyama, S.; Shiraiwa, T. Environmental Change and the Social Response in the Amur River Basin; Springer: Berlin/Heidelberg, Germany, 2014; Volume 5. [Google Scholar]
- Wei, Z.; Jin, H.J.; Zhang, J.M.; Yu, S.P.; Han, X.J.; Ji, Y.J.; He, R.X.; Chang, X.L. Prediction of permafrost changes in Northeastern China under a changing climate. Sci. China-Earth Sci. 2011, 54, 924–935. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.F.; Yan, B.X.; Muneoki, Y. Effects of land use and changes in cover on the transformation and transportation of iron: A case study of the Sanjiang Plain, Northeast China. Sci. China-Earth Sci. 2011, 54, 686–693. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhu, Y.; Chen, Y.N.; Zheng, H.L.; Liu, H.N.; Huang, H.B.; Liu, K.; Liu, L. Influences of forest on MODIS snow cover mapping and snow variations in the Amur River basin in Northeast Asia during 2000–2014. Hydrol. Process. 2017, 31, 3225–3241. [Google Scholar] [CrossRef]
- Zou, Y.C.; Wang, L.Y.; Xue, Z.S.; E, M.J.; Jiang, M.; Lu, X.G.; Yang, S.D.; Shen, X.J.; Liu, Z.M.; Sun, G.Z.; et al. Impacts of Agricultural and Reclamation Practices on Wetlands in the Amur River Basin, Northeastern China. Wetlands 2018, 38, 383–389. [Google Scholar] [CrossRef]
- Mokhov, I.I. Hydrological anomalies and tendencies of change in the basin of the Amur River under global warming. Dokl. Earth Sci. 2014, 455, 459–462. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.C.; Shalamzari, M.J. Remote detection of human-induced evapotranspiration in a regional system experiencing increased anthropogenic demands and extreme climatic variability. Int. J. Remote. Sens. 2019, 40, 1887–1908. [Google Scholar] [CrossRef]
- Mu, X.M.; Li, Y.; Gao, P.; Shao, H.B.; Wang, F. The Runoff Declining Process and Water Quality in Songhuajiang River Catchment, China under Global Climatic Change. Clean-Soil Air Water 2012, 40, 394–401. [Google Scholar] [CrossRef]
- Luan, Z.; Cao, H.; Zhou, D.; Deng, W. Impact of Human Activities on the Hydrological Regime of Bielahong River Watershed. Wetl. Sci. 2008, 6, 258–263. (In Chinese) [Google Scholar]
- Leavesley, G.H. Modeling the Effects of Climate Change on Water resources—A Review. In Assessing the Impacts of Climate Change on Natural Resource Systems; Frederick, K.D., Rosenberg, N.J., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 159–177. [Google Scholar]
- Licciardello, F.; Toscano, A.; Cirelli, G.L.; Consoli, S.; Barbagallo, S. Evaluation of sediment deposition in a Mediterranean reservoir: Comparison of long term bathymetric measurements and SWAT estimations. Land Degrad. Dev. 2017, 28, 566–578. [Google Scholar] [CrossRef]
- Montecelos-Zamora, Y.; Cavazos, T.; Kretzschmar, T.; Vivoni, E.R.; Corzo, G.; Molina-Navarro, E. Hydrological Modeling of Climate Change Impacts in a Tropical River Basin: A Case Study of the Cauto River, Cuba. Water 2018, 10, 1135. [Google Scholar] [CrossRef] [Green Version]
- Nilawar, A.P.; Waikar, M.L. Impacts of climate change on streamflow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India. Sci. Total Environ. 2019, 650, 2685–2696. [Google Scholar] [CrossRef]
- Jothityangkoon, C.; Sivapalan, M.; Farmer, D.L. Process controls of water balance variability in a large semi-arid catchment: Downward approach to hydrological model development. J. Hydrol. 2001, 254, 174–198. [Google Scholar] [CrossRef]
- Mourato, S.; Moreira, M.; Corte-Real, J. Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds. Water Resour. Manag. 2015, 29, 2377–2391. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Zabalza, J.; Vicente-Serrano, S.M.; Revuelto, J.; Gilaberte, M.; Azorin-Molina, C.; Morán-Tejeda, E.; García-Ruiz, J.M.; Tague, C. Impact of climate and land use change on water availability and reservoir management: Scenarios in the Upper Aragón River, Spanish Pyrenees. Sci. Total Environ. 2014, 493, 1222–1231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Lin, B.R.; Qi, J.Q.; Zheng, L.H.; Zhang, Z.C. Analysis of correlation between actual heating energy consumption and building physics, heating system, and room position using data mining approach. Energy Build. 2018, 166, 73–82. [Google Scholar] [CrossRef]
- Blöschl, G.; Ardoin-Bardin, S.; Bonell, M.; Dorninger, M.; Goodrich, D.; Gutknecht, D.; Matamoros, D.; Merz, B.; Shand, P.; Szolgay, J. At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol. Process. 2007, 21, 1241–1247. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.N.; Xia, D.Z.; Liu, Y.Y. An Analysis of Land Use Change Dynamics and Its Impacts on Hydrological Processes in the Jialing River Basin. Water 2014, 6, 3758–3782. [Google Scholar] [CrossRef] [Green Version]
- Nie, W.M.; Yuan, Y.P.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of Landuse and Landcover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Gyamfi, C.; Ndambuki, J.; Salim, R. Hydrological Responses to Land Use/Cover Changes in the Olifants Basin, South Africa. Water 2016, 8, 588. [Google Scholar] [CrossRef]
- Simonov, E.A.; Dahmer, T.D. Amur-Heilong River Basin Reader; Ecosystems Hong Kong: Hong Kong, China, 2008. [Google Scholar]
- Yu, H.; Yao, F. The current situation of the use right transfer of the “five wastes” resources and the consideration of the next work-the audit Investigation on the auctions of “five wastes” in Heihe City. Heihe J. 1996, 1, 38–40. (In Chinese) [Google Scholar] [CrossRef]
- Yu, H.; Yang, Y.; Wang, J. Auction development and management of “five wastes”-rational use of water and land resources. Water Res. Hydropower Northeast. China 1996, 12, 32–34. (In Chinese) [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Liu, Q.; Liu, D.; Ermoshin, V.V.; Ganzei, S.S.; Zhang, B.; Ren, C.; Zeng, L.; Du, J. Land use/land cover (LULC) classification with MODIS time series data and validation in the Amur River Basin. Geogr. Nat. Res. 2011, 32, 9–15. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote. Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Xie, H.; Longuevergne, L.; Ringler, C.; Scanlon, B.R. Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrol. Earth Syst. Sci. 2012, 16, 3083–3099. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Schwintzer, P.; Flechtner, F.; Reigber, C.; Guntner, A.; Doll, P.; Ramillien, G.; Cazenave, A.; Petrovic, S.; Jochmann, H.; et al. GRACE observations of changes in continental water storage. Glob. Planet. Chang. 2006, 50, 112–126. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güntner, A. Improvement of Global Hydrological Models Using GRACE Data. Surv. Geophys. 2008, 29, 375–397. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- Houser, P.R.; Shuttleworth, W.J.; Famiglietti, J.S.; Gupta, H.V.; Syed, K.H.; Goodrich, D.C. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res. 1998, 34, 3405–3420. [Google Scholar] [CrossRef] [Green Version]
- Boegh, E.; Thorsen, M.; Butts, M.B.; Hansen, S.; Christiansen, J.S.; Abrahamsen, P.; Hasager, C.B.; Jensen, N.O.; van der Keur, P.; Refsgaard, J.C.; et al. Incorporating remote sensing data in physically based distributed agro-hydrological modelling. J. Hydrol. 2004, 287, 279–299. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Wi, S.; Yang, Y.C.E.; Brown, C. Calibration of a Distributed Hydrologic Model Using Streamflow and Remote Sensing Snow Data. In Proceedings of the World Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems, Austin, TX, USA, 17–21 May 2015; pp. 973–982. [Google Scholar]
- Sun, W.C.; Ishidaira, H.; Bastola, S. Calibration of hydrological models in ungauged basins based on satellite radar altimetry observations of river water level. Hydrol. Process. 2012, 26, 3524–3537. [Google Scholar] [CrossRef]
- Cao, Y.; Nan, Z. Applications of GRACE in Hydrology: A Review. Remote. Sens. Technol. Appl. 2011, 26, 543–553. (In Chinese) [Google Scholar]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sneyers, R. Sur L’analyse Statistique des Séries D’observations; Secrétariat de L’Organisation Météorologique Mondiale: Geneva, Switzerland, 1975. [Google Scholar]
- Yang, Y.; Tian, F. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. J. Hydrol. 2009, 374, 373–383. [Google Scholar] [CrossRef]
- Moraes, J.M.; Pellegrino, G.Q.; Ballester, M.V.; Martinelli, L.A.; Victoria, R.L.; Krusche, A.V. Trends in Hydrological Parameters of a Southern Brazilian Watershed and its Relation to Human Induced Changes. Water Resour. Manag. 1998, 12, 295–311. [Google Scholar] [CrossRef]
- Gerstengarbe, F.W.; Werner, P.C. Estimation of the beginning and end of recurrent events within a climate regime. Clim. Res. 1999, 11, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Du, J.K.; Rui, H.Y.; Zuo, T.H.; Li, Q.; Zheng, D.P.; Chen, A.L.; Xu, Y.P.; Xu, C.Y. Hydrological Simulation by SWAT Model with Fixed and Varied Parameterization Approaches Under Land Use Change. Water Resour. Manag. 2013, 27, 2823–2838. [Google Scholar] [CrossRef]
- Pikounis, M.; Varanou, E.; Baltas, E.; Dassaklis, A.; Mimikou, M. Application of the SWAT model in the Pinios River basin under different land-use scenarios. Glob. Nest Int. J. 2003, 5, 71–79. [Google Scholar]
- Wu, K.; Johnston, C.A. Hydrologic response to climatic variability in a Great Lakes Watershed: A case study with the SWAT model. J. Hydrol. 2007, 337, 187–199. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Luo, K.S.; Tao, F.L.; Moiwo, J.P.; Xiao, D.P. Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades. Sci. Rep. 2016, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, R.D. Partial Least Squares (PLS): Its strengths and limitations. Perspect. Drug Discov. Des. 1993, 1, 269–278. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. In Matrix Pencils; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Figueiredo Filho, D.B.; Júnior, J.A.S.; Rocha, E.C. What is R2 all about? Leviathan (São Paulo) 2011, 3, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Heinzl, H.; Mittlböck, M. Adjusted R2 Measures for the Inverse Gaussian Regression Model. Comput. Stat. 2002, 17, 525–544. [Google Scholar] [CrossRef]
Data Type | Description | Source |
---|---|---|
Land-use | Chinese land-use map (1980, 1995, 2005, and 2010) and global land-use map (1992–1993, 2000, 2005, and 2010) | Chinese land-use maps from Resource and Environment Data Cloud Platform; MODIS land cover type product from U.S. Geological Survey (USGS); Global Land Cover Characterization (GLCC) from USGS; and Global Land Cover 2000 database (GLC2000) from Joint Research Centre, European Commission |
Soil | Soil map linked to harmonized soil property data-30 arc seconds | Harmonized World Soil Database (HWSD) from the Food and Agriculture Organization (FAO) |
Climate | Daily precipitation, temperature, solar radiation, relative humidity, and wind speed from 1977 to 2013 | China Meteorological Data Network (CMA) and NOAA’s National Centers for Environmental Information (NCEI) |
Topography | Digital elevation model-30 arc seconds | Global 30 arc-second elevation (GTOPO30) from USGS |
Hydrology | River network and river basin boundary | Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS) and Global Change Research Data Publishing and Repository |
Scenarios | Land-Use | Model Parameters | Climate Data |
---|---|---|---|
No. 1 | 1980–1990 | 1980–1990 | 1980–1990 |
No. 2 | 1980–1990 | 1980–1990 | 1991–1999 |
No. 3 | 1991–1999 | 1991–1999 | 1991–1999 |
No. 4 | 1991–1999 | 1991–1999 | 2000–2006 |
No. 5 | 2000–2006 | 2000–2006 | 2000–2006 |
No. 6 | 2000–2006 | 2000–2006 | 2007–2013 |
No. 7 | 2007–2013 | 2007–2013 | 2007–2013 |
Dependent Variables | Standardized Beta Coefficient | R2 | Adjusted R2 | Sig | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SP | WTM | STM | WP | STA | WTA | DW | DS | ||||
SurQ | 0.800 | 0.185 | 0.112 | 0.005 | 0.330 | −0.101 | 0.023 | −0.186 | 0.833 | 0.777 | 0.000 |
GWQ | 0.542 | 1.353 | 0.008 | −0.097 | 0.419 | −0.796 | 0.305 | −0.013 | 0.723 | 0.631 | 0.000 |
LATQ | 0.785 | 1.060 | −0.159 | −0.005 | 0.316 | −0.765 | 0.009 | 0.381 | 0.703 | 0.604 | 0.000 |
Latent Factors | Y Variance | R2 | Adjusted R2 |
---|---|---|---|
1 | 0.347 | 0.347 | 0.326 |
2 | 0.276 | 0.622 | 0.597 |
3 | 0.047 | 0.669 | 0.635 |
4 | 0.028 | 0.698 | 0.654 |
5 | 0.008 | 0.706 | 0.651 |
Independent Variables | Beta Coefficient | VIP | |||||||
---|---|---|---|---|---|---|---|---|---|
SurQ | GWQ | LATQ | Model | LF 1 | LF 2 | LF 3 | LF 4 | LF 5 | |
SP | 0.0522 | 0.0148 | 0.0005 | 1.6361 | 2.1531 | 2.2665 | 2.2120 | 2.1873 | 2.1750 |
WTM | 0.3371 | 0.3121 | 0.0052 | 0.8404 | 1.0188 | 0.7760 | 0.7738 | 0.7914 | 0.7916 |
STM | 0.6984 | 0.4213 | 0.0106 | 0.9532 | 0.3309 | 0.8549 | 0.8436 | 0.8327 | 0.8295 |
WP | 0.0223 | −0.0356 | −0.0010 | 0.9210 | 0.9626 | 0.9694 | 1.0513 | 1.0727 | 1.0717 |
STA | 2.6351 | 1.1645 | 0.0309 | 1.1037 | 0.0823 | 1.1942 | 1.1930 | 1.1696 | 1.1659 |
WTA | −0.1508 | 0.1909 | −0.0007 | 0.8090 | 0.7682 | 0.6156 | 0.5946 | 0.6356 | 0.6401 |
DW | 0.1102 | 0.1776 | −0.0153 | 0.5282 | 0.1323 | 0.1721 | 0.4119 | 0.4177 | 0.4677 |
DS | −1.0021 | −0.1794 | −0.0010 | 0.8420 | 0.8219 | 0.6586 | 0.6370 | 0.6517 | 0.6525 |
Dependent Variables | Standardized Beta Coefficient | R2 | Adjusted R2 | Sig | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Forest | Pasture | Wetland | Crop | Residential | Water | Range | ||||
SurQ | 0.399 | 0.021 | −0.202 | −0.375 | −0.088 | −0.610 | 0.107 | 0.981 | 0.975 | 0.000 |
GWQ | −0.363 | −0.144 | −0.213 | 0.496 | 0.433 | 0.881 | −0.170 | 0.927 | 0.906 | 0.000 |
LATQ | −0.391 | −0.002 | −0.232 | 0.376 | 0.529 | 1.563 | 0.032 | 0.968 | 0.959 | 0.000 |
Latent Factors | Y Variance | R2 | Adjusted R2 |
---|---|---|---|
1 | 0.641 | 0.641 | 0.630 |
2 | 0.175 | 0.816 | 0.804 |
3 | 0.077 | 0.893 | 0.882 |
4 | 0.057 | 0.950 | 0.943 |
5 | 0.026 | 0.976 | 0.972 |
Independent Variables | Beta Coefficient | VIP | |||||||
---|---|---|---|---|---|---|---|---|---|
SurQ | GWQ | LATQ | Model | LF 1 | LF 2 | LF 3 | LF 4 | LF 5 | |
Forest | 0.0253 | −0.0119 | −0.0001 | 0.8822 | 0.6700 | 1.0300 | 0.9900 | 0.9700 | 0.9600 |
Pasture | −0.0051 | 0.0010 | 0.0000 | 1.0308 | 1.1100 | 0.9900 | 0.9700 | 0.9800 | 0.9700 |
Wetland | −0.0554 | −0.0496 | −0.0004 | 1.0819 | 1.1900 | 1.0600 | 1.1000 | 1.0900 | 1.0800 |
Crop | −0.0211 | 0.0126 | 0.0001 | 1.2533 | 1.3400 | 1.5200 | 1.4600 | 1.4100 | 1.4000 |
Residential | −0.6505 | 1.1549 | 0.0134 | 0.7905 | 0.6600 | 0.7100 | 0.7600 | 0.8200 | 0.8100 |
Water | −0.9911 | 0.7957 | 0.0118 | 1.0379 | 1.0200 | 0.9100 | 1.0000 | 1.1400 | 1.1800 |
Range | 0.1524 | −0.1638 | 0.0029 | 0.8460 | 0.7900 | 0.7200 | 0.6900 | 0.7400 | 0.7700 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhang, W.; Guo, Y. Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin. Water 2020, 12, 76. https://doi.org/10.3390/w12010076
Zhou S, Zhang W, Guo Y. Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin. Water. 2020; 12(1):76. https://doi.org/10.3390/w12010076
Chicago/Turabian StyleZhou, Shilun, Wanchang Zhang, and Yuedong Guo. 2020. "Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin" Water 12, no. 1: 76. https://doi.org/10.3390/w12010076
APA StyleZhou, S., Zhang, W., & Guo, Y. (2020). Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin. Water, 12(1), 76. https://doi.org/10.3390/w12010076