Quantitative Analysis of Hydrological Responses to Climate Variability and Land-Use Change in the Hilly-Gully Region of the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Description
2.3. Data Collection
2.4. Evaluation of the SWAT Model
2.5. Framework for Quantitative Assessment
3. Results and Discussion
3.1. Annual Hydro−Meteorological Variabilities
3.2. Land-Use Change
3.3. Calibration and Validation of the SWAT
3.4. Quantitative Assessment the Hydrological Effects of Human Activities and Climate Variability
3.4.1. Quantitative Assessment of the Impact on Runoff
3.4.2. Quantitative Assessment the Impact on Soil Water and Evapotranspiration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Chen, L.D.; Peng, H.J.; Fu, B.J.; Qiu, J.; Zhang, S.R. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China. J. Environ. Sci. 2005, 17, 224–231. (In Chinese) [Google Scholar]
- Baggaley, N.J.; Langan, S.J.; Futter, M.N.; Potts, J.M.; Dunn, S.M. Long-term trends in hydro-climatology of a major Scottish mountain river. Sci. Total Environ. 2009, 407, 4633–4641. [Google Scholar] [CrossRef]
- Hoque, Y.M.; Raj, C.; Hantush, M.M.; Chaubey, I.; Govindaraju, R.S.; Aral, M.M. How do land-use and climate change affect watershed health? A scenario-based analysis. Water Qual. Expo. Health 2013, 6, 1–15. [Google Scholar] [CrossRef]
- Kim, H.W.; Amatya, D.M.; Chescheir, G.M.; Skaggs, W.R.; Nettles, J.E. Hydrologic effects of size and location of fields converted from drained pine forest to agricultural cropland. J. Hydrol. Eng. 2013, 18, 552–566. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Hoover, D.L.; Wilcox, K.R.; Avolio, M.L.; Koerner, S.E.; La Pierre, K.J.; Loik, M.E.; Luo, Y.; Sala, O.E.; Smith, M.D. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob. Chang. Biol. 2015, 21, 2624–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Scott, D.; Hall, C.M.; Gossling, S. A review of the IPCC Fifth Assessment and implications for tourism sector climate resilience and decarbonisation. J. Sustain. Tour. 2015, 24, 8–30. [Google Scholar]
- Durack, P.J.; Wijffels, S.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Guo, L.-P.; Mu, X.-M.; Hu, J.-M.; Gao, P.; Zhang, Y.-F.; Liao, K.-T.; Bai, H.; Chen, X.-L.; Song, Y.-J.; Jin, N. Assessing impacts of climate change and human activities on streamflow and sediment discharge in the Ganjiang River basin (1964–2013). Water 2019, 11, 1679. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.U.; Yu, X. Analysis of dam inflow variation using the hydrological sensitivity method in a Trans-Boundary River basin: Case study in the Korean Peninsula. Water 2019, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, S.U. Quantification of hydrological responses due to climate change and human activities over various time scales in South Korea. Water 2017, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance. Ecol. Eng. 2017, 105, 42–57. [Google Scholar] [CrossRef]
- Lin, Y.P.; Hong, N.M.; Wu, P.J.; Lin, C.J. Modeling and assessing land-use and hydrological processes to future land-use and climate change scenarios in watershed land-use planning. Environ. Geol. 2007, 53, 623–634. [Google Scholar] [CrossRef]
- Xiao, J. Satellite evidence for significant biophysical consequences of the “Grain for Green” program on the Loess Plateau in China. J. Geophys. Res. 2014, 119, 2261–2275. [Google Scholar] [CrossRef] [Green Version]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. Hydrologic response in an urban watershed as affected by climate and land-use change. Water 2019, 11, 1603. [Google Scholar] [CrossRef] [Green Version]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef]
- Pan, S.; Liu, D.; Wang, Z.; Zhao, Q.; Zou, H.; Hou, Y.; Liu, P.; Xiong, L. Runoff responses to climate and land use/cover changes under future scenarios. Water 2017, 9, 475. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Zhang, X.C.; Zheng, F. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Miao, C.; Ni, J.; Borthwick, A.G.L.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Chang. 2011, 76, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zeng, S.; Wang, R.; Xia, J. Impacts of climate change on the hydrological cycle in the Luan River basin. Resour. Sci. 2011, 33, 966–974. (In Chinese) [Google Scholar]
- Fohrer, N.; Haverkamp, S.; Frede, H.G. Assessment of the effects of land use patterns on hydrologic landscape functions: development of sustainable land use concepts for low mountain range areas. Hydrol. Process. 2005, 19, 659–672. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Xing, W.; Sun, F.; Luo, Y. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrol. Process. 2013, 27, 1158–1174. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, M. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study. Water Resour. Res. 2010, 46, 439–445. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Van Belle, G.; Hughes, J.P. Nonparametric tests for trend in water quality. Water Resour. Res. 1984, 20, 127–136. [Google Scholar] [CrossRef]
- Chen, H.; Guo, S.; Xu, C.; Singh, V.P. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J. Hydrol. 2007, 344, 171–184. [Google Scholar] [CrossRef]
- Pielke, R.A. Atmosphere science: Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [Green Version]
- Tomer, M.D.; Schilling, K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Jothityangkoon, C.; Sivapalan, M.; Farmer, D. Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological model development. J. Hydrol. 2001, 254, 174–198. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.; Coppola, E.; Tomassetti, B.; Verdecchia, M.; Visconti, G. Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models; Springer: Irvine, CA, USA, 2009. [Google Scholar]
- Sood, A.; Smakhtin, V.U. Global hydrological models: A review. Hydrol. Sci. J. 2015, 60, 549–565. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Her, Y.; Frankenberger, J.R.; Chaubey, I.; Srinivasan, R. Threshold effects in HRU definition ofthe Soil and Water Assessment Tool. Trans. ASABE 2015, 58, 367–378. [Google Scholar]
- Huang, L.; Shao, M.A. Advances and perspectives on soil water research in China’s Loess Plateau. Earth-Sci. Rev. 2019, 199, 102962. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.; Jia, F.; Mo, B. Spatial variations of shallow and deep soil moisture in the semi-arid Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 3199–3217. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Ma, Z.; Yang, Q.; Han, Y.; Mahmood, R.; Zheng, Z. Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part I: observational evidence. Clim. Chang. 2015, 129, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Tsunekawa, A.; Liu, G.; Yamanaka, N.; Du, S. Restoration and Development of the Degraded Loess Plateau, China; Springer: Tokyo, Japan, 2014. [Google Scholar]
- Zhao, C.; Gao, J.; Huang, Y.; Wang, G.; Xu, Z. The contribution of Astragalus adsurgens roots and canopy to water erosion control in the water-wind crisscrossed erosion region of the Loess Plateau, China. Land Degrad. Dev. 2017, 28, 265–273. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Wang, Z. Characteristics of Vegetation and Erosion Sediment Yield in the Yanhe Watershed. Ph.D. Thesis, University of Chinese Academy of Sciences, Shaanxi, China, 2014. (In Chinese). [Google Scholar]
- Yan, R.; Zhang, X.; Yan, S.; Zhang, J.; Chen, H. Spatial patterns of hydrological responses to land use/cover change in a catchment on the Loess Plateau, China. Ecol. Indic. 2017, 92, 151–160. [Google Scholar] [CrossRef]
- Wang, F.; Mu, X.; Jiao, J.; Li, R. Impact of human activitieson runoff and sediment change of Yanhe River based on theperiods divided by sediment concentration. J. Sediment Res. 2008, 33, 8–13. (In Chinese) [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensven, A.V.; Liew, M.W.V. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Arnold, J.; Srinivasan, R.; Neitsch, S.; George, C.; Abbaspour, K.; Gassman, P.; Fang, H.H.; Van Griensven, A.; Gosain, A.; Debels, P. Soil and Water Assessment Tool (SWAT): Global Applications; World Association of Soil and Water Conservation: Bangkok, Tailand, 2009. [Google Scholar]
- Bouraoui, F.; Grizzetti, B.; Granlund, K.; Rekolainen, S.; Bidoglio, G. Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Clim. Chang. 2004, 66, 109–126. [Google Scholar] [CrossRef]
- Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef]
- Kang, H.; Yusof, F. Homogeneity tests on daily rainfall series in peninsular Malaysia. Int. J. Contemp. Math. Sci. 2012, 7, 9–22. [Google Scholar]
- Mallakpour, I.; Villarini, G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Int. Assoc. Sci. Hydrol. Bull. 2016, 61, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Nalley, D.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmos. Res. 2013, 132, 375–398. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Silva, R.M.D.; Santos, C.A.G.; Moreira, M.; Corte–Real, J.; Silva, V.C.L.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Wang, Z.; Li, Z. The inter-intra annual climatic pattern of potential evaporation in Beijing and attribution, Chinese. J. Nat. Resour. 2013, 28, 1911–1921. (In Chinese) [Google Scholar]
- Dinpashoh, Y.; Jahanbakhshasl, S.; Rasouli, A.A.; Foroughi, M.; Singh, V.P. Impact of climate change on potential evapotranspiration (case study: west and NW of Iran). Theor. Appl. Climatol. 2019, 136, 185–201. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Yang, Y.; Long, D.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in C hina’s Loess P lateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Shi, H.; Shao, M. Soil and water loss from the Loess Plateau in China. J. Arid Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, X.; Xu, J.; Ma, T.; Ma, Q.; Lei, Y. Temporal and spatial variation of vegetation cover of the water-wind erosion crisscross region in the Loess Plateau. J. Northwest Agric. For. Univ. (Nat. Sci. Ed.) 2012, 40, 143–156. (In Chinese) [Google Scholar]
- Yan’an Municipal Government. Investigation on the construction of “Grain for Green” project in Yan’an City. Political Newspaper of the People’s Government of Yan’an City 2018, 5, 41–43. (In Chinese) [Google Scholar]
- Statistics Bureau of Shaanxi Province. Shaanxi Statistical Yearbook; Shaanxi People’s Publishing House: Xi’an, China, 1986–2013. (In Chinese) [Google Scholar]
- Kang, S.; Zhang, L.; Song, X.; Zhang, S.; Liu, X.; Liang, Y.; Zheng, S. Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China. Hydrol. Process. 2001, 15, 977–988. [Google Scholar] [CrossRef]
- Smith, R.E.; Goodrich, D.C. Rainfall excess overland flow. Encycl. Hydrol. Sci. 2006, 1707–1717. [Google Scholar]
- Sun, W.; Mu, X.; Song, X.; Dan, W.; Cheng, A.; Bing, Q. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Zhu, Z. Basic features of forest steppe in the Loess Plateau. Chin. Geogr. Sci. 1995, 5, 170–174. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Jiao, F.; Liang, N.; Wang, Z. Evaluation of soil moisture of land use under different vegetation zones in Yanhe Basin. Res. Soil Water Conserv. 2014, 21, 74–77. (In Chinese) [Google Scholar]
Farmland | Forest Land | Grass Coverage | Residential | Water | Others | |||||
---|---|---|---|---|---|---|---|---|---|---|
Wood | Shrub | Others | High | Medium | Low | |||||
1995 Area (km2) | 3295 | 47 | 515 | 265 | 2 | 1663 | 1848 | 15 | 36 | 3 |
Ratio (%) | 42.85 | 0.61 | 6.70 | 3.45 | 0.03 | 21.63 | 24.03 | 0.20 | 0.47 | 0.04 |
2006 Area (km2) | 3076 | 47 | 592 | 427 | 39 | 1686 | 1765 | 27 | 23 | 7 |
Ratio (%) | 40.01 | 0.61 | 7.70 | 5.55 | 0.51 | 21.93 | 22.95 | 0.35 | 0.30 | 0.09 |
Change Area (km2) | −219 | 0 | 77 | 162 | 37 | 23 | −83 | 12 | −13 | 4 |
Change Rate (%) | −2.85 | 0.00 | 1.00 | 2.11 | 0.48 | 0.30 | −1.08 | 0.16 | −0.17 | 0.05 |
Parameters | Definition | Method a | Optimized Value |
---|---|---|---|
CN2 | Initial SCS CN II value | R | 0.27 |
ALPHA_BF | Baseflow alpha factor (day) | V | 0.35 |
ESCO | Soil evaporation compensation factor | V | 0.28 |
SLSUBBSN | Average Slope length (m) | R | 0.20 |
SOL_AWC | Available water capacity of the soil layer (mm/mm) | R | 0.12 |
SOL_Z | Soil layer thickness (mm) | R | −0.04 |
SURLAG | Surface runoff lag time (%) | V | 23.75 |
Scenarios | Climate | Land Use | Runoff Depth, mm | Change of Runoff Depth, mm | Percentage, % |
---|---|---|---|---|---|
S1 | 1982–1994 | 1985 | 29.16 | — | — |
S2 | 2000–2012 | 1985 | 20.92 | −8.24 | −73% |
S3 | 1982–1994 | 2006 | 23.45 | −5.71 | −51% |
S4 | 2000–2012 | 2006 | 17.86 | −11.30 | −100% |
Sub-Basin | Main Change of Land-Use Type | Change Area (km2) | Runoff Depth Change (mm/year) | Contribution Rate (mm/(km2·year)) |
---|---|---|---|---|
1, 3, 4 | Cropland to grassland | 283.42 | −18.54 | −0.07 |
2, 5–15, 18, 20, 22, 26 | Cropland to grassland and forestland | 1198.94 | −91.55 | −0.08 |
16, 21, 24, 25 | Cropland and grassland to forestland | 164.56 | −38.94 | −0.24 |
17, 19 | Cropland to forestland, grassland and urban land | 34.75 | 13.97 | 2.49 |
23 | Cropland, forestland and urban land to grassland | 1.28 | −18.33 | −14.38 |
Scenarios | Climate | Land Use | Precipitation, mm | Soil Water | Evapotranspiration | ||||
---|---|---|---|---|---|---|---|---|---|
Simulated, mm | Change, mm | Percentage | Simulated, mm | Change, mm | Percentage | ||||
S1 | 1982–1994 | 1985 | 541.40 | 112.03 | — | — | 436.50 | — | — |
S2 | 2000–2012 | 1985 | 504.78 | 108.93 | −3.10 | −36% | 443.70 | 7.20 | 61% |
S3 | 1982–1994 | 2006 | 541.40 | 107.72 | −4.31 | −51% | 461.32 | 24.82 | 209% |
S4 | 2000–2012 | 2006 | 504.78 | 103.52 | −8.51 | −100% | 448.37 | 11.87 | 100% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Gao, J.; Shao, H.; Zhang, Y. Quantitative Analysis of Hydrological Responses to Climate Variability and Land-Use Change in the Hilly-Gully Region of the Loess Plateau, China. Water 2020, 12, 82. https://doi.org/10.3390/w12010082
Kang Y, Gao J, Shao H, Zhang Y. Quantitative Analysis of Hydrological Responses to Climate Variability and Land-Use Change in the Hilly-Gully Region of the Loess Plateau, China. Water. 2020; 12(1):82. https://doi.org/10.3390/w12010082
Chicago/Turabian StyleKang, Youcai, Jianen Gao, Hui Shao, and Yuanyuan Zhang. 2020. "Quantitative Analysis of Hydrological Responses to Climate Variability and Land-Use Change in the Hilly-Gully Region of the Loess Plateau, China" Water 12, no. 1: 82. https://doi.org/10.3390/w12010082
APA StyleKang, Y., Gao, J., Shao, H., & Zhang, Y. (2020). Quantitative Analysis of Hydrological Responses to Climate Variability and Land-Use Change in the Hilly-Gully Region of the Loess Plateau, China. Water, 12(1), 82. https://doi.org/10.3390/w12010082