Ambient Background Values of Selected Chemical Substances in Four Groundwater Bodies in the Pannonian Region of Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study area Description
2.2. Available Data Set
2.3. Description of Methods
- Sort measured data from the smallest to the largest. The label for sorted data is ;
- Calculate , where n is the number of data, and i denotes the index of the data in the sorted sequence from the step 1;
- Calculate ;
- Calculate , where if , and , if ;
- Take a natural logarithm of sorted data, i.e., to calculate ;
- The probability plot is obtained by displaying logarithmic values (from the step 5) on the x-axis and the corresponding values of zi on the y-axis.
3. Results and Discussion
3.1. Arsenic
3.2. Iron
3.3. Sulphate
3.4. Chloride
3.5. Nitrate
3.6. Comparison of UL Estimates and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
Full Term Name | Abbreviation |
European Union | EU |
Natural Baseline Quality in European Aquifers: A Basis for Aquifer Management | BaSeLiNe |
Probability plot | PP |
Limit of quantification | LOQ |
European Commission | EC |
Median absolute deviation | MAD |
Standard deviation | SD |
Background Criteria for Identification of Groundwater Thresholds | BRIDGE |
Upper limit of the range of ambient background values | UL |
Number of data | N |
Dissolved Oxygen | DO |
References
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background—Can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Preziosi, E.; Parrone, D.; Del Bon, A.; Ghergo, S. Natural background level assessment in groundwaters: Probability plot versus pre-selection method. J. Geochem. Explor. 2014, 143, 43–53. [Google Scholar] [CrossRef]
- Reimann, C.; Garrett, R.G. Geochemical background—Concept and reality. Sci. Total Environ. 2005, 350, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Panno, S.V.; Kelly, W.R.; Martinsek, A.T.; Hackley, K.C. Estimating background and threshold nitrate concentrations using probability graphs. Groundwater 2006, 44, 697–709. [Google Scholar] [CrossRef]
- Nakić, Z.; Posavec, K.; Bačani, A. A visual basic spreadsheet macro for geochemical background analysis. Groundwater 2007, 45, 642–647. [Google Scholar] [CrossRef]
- Nakić, Z.; Posavec, K.; Parlov, J. Model-based objective methods for the estimation of groundwater geochemical background. Aqua Mundi 2010, 1, 65–72. [Google Scholar]
- Rodriguez, J.G.; Tueros, I.; Borja, A.; Belzunce, M.J.; Franco, J.; Solaun, O.; Valencia, V.; Zuazo, A. Maximum likelihood mixture estimation to determine metal background values in estuarine and coastal sediments within the European Water Framework Directive. Sci. Total Environ. 2006, 370, 278–293. [Google Scholar] [CrossRef]
- Molinari, A.; Guadagnini, L.; Marcaccio, M.; Guadagnini, A. Natural background levels and threshold values of chemical species in three large scale groundwater bodies in Northern Italy. Sci. Total Environ. 2012, 425, 9–19. [Google Scholar] [CrossRef]
- Balderacchi, M.; Benoit, P.; Cambier, P.; Eklo, O.M.; Gargini, A.; Gemitzi, A.; Gurel, M.; Klöve, B.; Nakić, Z.; Preda, E.; et al. Groundwater pollution and quality monitoring approaches at European-level. Crit. Rev. Environ. Sci. Technol. 2013, 43, 323–408. [Google Scholar] [CrossRef]
- Edmunds, W.M.; Shand, P. Natural groundwater quality: Summary and significance for water resources management. In Natural Groundwater Quality; Edmunds, W.M., Shand, P., Eds.; Blackwell Publishing Ltd.: London, UK, 2008; pp. 441–462. [Google Scholar]
- Reimann, C.; Filzmoser, P. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol. 2000, 39, 1001–1014. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Background and threshold: Critical comparison of methods of determination. Sci. Total Environ. 2005, 346, 1–16. [Google Scholar] [CrossRef] [PubMed]
- BRIDGE, Background cRiteria for the IDentification of Groundwater thrEsholds. Available online: http://nfp-at.eionet.europa.eu/irc/eionet-circle/bridge/info/data/en/index.htm (accessed on 14 April 2020).
- Waendland, F.; Hannapel, S.; Kunkel, R.; Schenk, R.; Voigt, H.J.; Wolter, R. A procedure to define natural groundwater conditions of groundwater bodies in Germany. Water Sci. Technol. 2005, 51, 249–257. [Google Scholar] [CrossRef]
- Coetsiers, M.; Blaser, P.; Martens, K.; Walraevens, K. Natural background levels and threshold values for groundwater in fluvial Pleistocene and Tertiary marine aquifers in Flanders, Belgium. Environ. Geol. 2009, 57, 1155–1168. [Google Scholar] [CrossRef]
- Gemitzi, A. Evaluating the anthropogenic impacts on groundwaters: A methodology based on the determination of natural background levels and threshold values. Environ. Earth Sci. 2012, 67, 2223–2237. [Google Scholar] [CrossRef]
- Griffioen, J.; Passier, H.F.; Klein, J. Comparison of selection methods to deduce natural background levels for groundwater units. Environ. Sci. Technol. 2008, 42, 4863–4869. [Google Scholar] [CrossRef]
- Hinsby, K.; Condesso de Melo, M.T.; Dahl, M. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci. Total Environ. 2008, 401, 1–20. [Google Scholar] [CrossRef]
- Swedish Environmental Protection Agency. Environmental Quality Criteria—Groundwater. 2000. Available online: https://www.naturvardsverket.se/Documents/publikationer/620-6033-3.pdf (accessed on 16 April 2020).
- WFD—Development of a Methodology for the Characterisation of Unpolluted Groundwater (2002-W-DS-7), Main Report. 2004. Available online: https://www.epa.ie/pubs/reports/research/water (accessed on 16 April 2020).
- Sinclair, A.J. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 1974, 3, 129–149. [Google Scholar] [CrossRef]
- Kyoung-Ho, K.; Seong-Taek, Y.; Hyun-Koo, K.; Ji-Wook, K. Determinations of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approach. J. Geochem. Explor. 2015, 148, 196–205. [Google Scholar]
- Sinclair, A.J. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited. J. Geochem. Explor. 1991, 41, 1–22. [Google Scholar] [CrossRef]
- Lepeltier, C. A simplified treatment of geochemical data by graphical representation. Econ. Geol. 1969, 64, 538–550. [Google Scholar] [CrossRef]
- Nakić, Z.; Ugrina, I.; Špoljarić, D.; Kovač, Z. Applicability of selected model-based objective methods for natural background level assessment. Unpublished work. 2020. [Google Scholar]
- River Basin Management Plan of the Republic of Croatia 2016–2021. Official Gazette. 2016. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/dodatni/441070.pdf (accessed on 18 August 2020).
- Brkić, Ž.; Briški, M. Hydrogeology of the western part of the Drava Basin in Croatia. J. Maps 2018, 14, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Urumović, K.; Duić, Ž.; Hlevnjak, B. Positive and negative influences of hydroelectric plants on Drava river to groundwater quality. In Proceedings of the XXIst Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management, Bucharest, Romania, 22–26 September 2002; pp. 1–7. [Google Scholar]
- Ujević, M.; Duić, Ž.; Casiot, C.; Sipos, L.; Santo, V.; Dadić, Ž.; Halamić, J. Occurrence and geochemistry of arsenic in the groundwater of Eastern Croatia. Appl. Geochem. 2010, 25, 1017–1029. [Google Scholar] [CrossRef]
- Brkić, Ž.; Briški, M.; Marković, T. Use of hydrochemistry and isotopes for improving the knowledge of groundwater flow in a semiconfined aquifer system of the Eastern Slavonia. Catena 2016, 142, 153–165. (In Croatian) [Google Scholar] [CrossRef]
- Mutić, R. Correlation of the Eastern Slavonian Quaternary deposits based on mineralogical and petrographical analyses (Eastern Croatia). Acta Geol. 1993, 23, 1–37. (In Croatian) [Google Scholar]
- Oreščanin, V. Arsenic in the water—The origin of the toxic effect of the removal methods. Hrvatske vode 2013, 21, 7–16. (In Croatian) [Google Scholar]
- Rowland, H.A.L.; Omoregie, E.O.; Millot, R.; Jimenez, C.; Mertens, J.; Baciu, C.; Hug, S.J.; Berg, M. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 2011, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hećimović, I. Tectonic Relationships of the Wider Kalnik Area. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 1995. (In Croatian). [Google Scholar]
- D’Agostino, R.B.; Stephens, M.A. Goodness-of-Fit Techniques (Statistics: A Series of Textbooks and Monographs, 1st ed.; Marcel Dekker Inc.: New York, NY, USA, 1986; p. 576. [Google Scholar]
- Reimann, C.; Filzmoser, P.; Garrett, R.G.; Dutter, R. Statistical Data Analysis Explained: Applied Environmental Statistics with R, 1st ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2009; p. 343. [Google Scholar]
- Jakeman, A.; Taylor, J. A hybrid ATDL-gamma distribution model for predicting urban area source acid gas concentration. Atmos. Environ. 1985, 19, 1959–1967. [Google Scholar] [CrossRef]
- Parslow, G.R. Determination of background and threshold in exploration geochemistry. J. Geochem. Explor. 1974, 3, 319–336. [Google Scholar] [CrossRef]
- Ashley, R.P.; Keith, W.J. Distribution of Gold and Other Metals in Silicified Rocks of the Goldfield Mining District, Nevada; Geological Survey Professional Paper 843-B; United States Government Printing Office: Washington, DC, USA, 1976; p. 17.
- Reimann, C.; de Caritat, P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci. Total Environ. 2017, 578, 633–648. [Google Scholar] [CrossRef] [Green Version]
- Ujević-Bošnjak, M.; Fazinić, S.; Duić, Ž. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques. Nucl. Instrum. Methods Phys. Res. B 2013, 312, 23–29. [Google Scholar] [CrossRef]
- Ujević Bošnjak, M.; Casiot, C.; Duić, Ž.; Fazinić, S.; Halamić, J.; Sipos, L.; Santo, V.; Dadić, Ž. Sediment characterization and its implications for arsenic mobilization in deep aquifers of eastern Croatia. J. Geochem. Explor. 2013, 126, 55–66. [Google Scholar] [CrossRef]
- Shand, P.; Edmunds, W.M. The baseline inorganic chemistry of European groundwaters. In Natural Groundwater Quality; Edmunds, W.M., Shand, P., Eds.; Blackwell Publishing Ltd.: London, UK, 2008; pp. 22–58. [Google Scholar]
- Edmunds, W.M.; Shand, P. Groundwater baseline quality. In Natural Groundwater Quality; Edmunds, W.M., Shand, P., Eds.; Blackwell Publishing Ltd.: London, UK, 2008; pp. 1–21. [Google Scholar]
- Thunqvist, E.L. Regional increase of mean chloride concentration in water due to the application of deicing salt. Sci. Total Environ. 2004, 325, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Kovač, Z.; Nakić, Z.; Pavlić, K. Influence of groundwater quality indicators on nitrate concentrations in the Zagreb aquifer system. Geol. Croat. 2017, 70, 93–103. [Google Scholar] [CrossRef]
- Kovač, Z.; Nakić, Z.; Barešić, J.; Parlov, J. Nitrate origin in the zagreb aquifer system. Geofluids 2018, 2018, 2789691. [Google Scholar] [CrossRef] [Green Version]
- Preziosi, E.; Giuliano, G.; Vivona, R. Natural background levels and threshold values derivation for naturally As, V and F rich groundwater bodies: A methodological case study in Central Italy. Environ. Earth Sci. 2010, 61, 885–897. [Google Scholar] [CrossRef]
Groundwater Body | Area (km2) | Total Thickness of Permeable Layers (m) | Average Hydraulic Conductivity (K) (m/day) |
---|---|---|---|
CDGI_19 | 402.1 | 80 | 210 |
CDGI_23 | 5010.9 | 120 | 30 |
CSGI_29 | 3329.4 | 50 | 110 |
CSGN_25 | 5188.1 | 40 | 50 |
Chemical Substance | Statistics | Groundwater Body | |||
---|---|---|---|---|---|
CDGI_19 | CDGI_23 | CSGI_29 | CSGN_25 | ||
Arsenic (µg/L) | Arithmetic mean | - | 37.3 (37.2 *) | 14.3 (14.0 *) | 5.5 (4.5 *) |
Standard deviation | - | 67.3 (68.3 *) | 19.8 (21.3 *) | 6.5 (5.4 *) | |
Coefficient of variation | - | 1.8 (1.8 *) | 1.4 (1.5 *) | 1.2 (1.2 *) | |
N of samples | 342 | 400 (293 *) | 227 (161 *) | 135 (108 *) | |
<LOQ | 342 | 109 (93 *) | 102 (87 *) | 62 (54 *) | |
Percentage of <LOQ | 100.00 | 27.3 (31.7 *) | 44.9 (54.0 *) | 45.9 (50.0 *) | |
Iron (µg/L) | Arithmetic mean | 21.6 (23.2 *) | 1822.4 | 3402.2 | 219.4 |
Standard deviation | 67.1 (83.6 *) | 1873.7 | 6101.2 | 382.6 | |
Coefficient of variation | 3.1 (3.6 *) | 1.0 | 1.8 | 1.7 | |
N of samples | 284 (165 *) | 404 | 227 | 135 | |
<LOQ | 79 (52 *) | 7 | 10 | 11 | |
Percentage of <LOQ | 27.8 (31.5 *) | 1.7 | 4.4 | 8.1 | |
Sulphate (mg/L) | Arithmetic mean | 34.8 | 14.8 (17.3 *) | 7.7 (8.2 *) | 15.9 (15.2 *) |
Standard deviation | 31.7 | 35.2 (37.6 *) | 10.5 (11.8 *) | 28.7 (28.4 *) | |
Coefficient of variation | 0.9 | 2.4 (2.2 *) | 1.4 (1.4 *) | 1.8 (1.9 *) | |
N of samples | 342 | 454 (332 *) | 255 (180 *) | 151 (122 *) | |
<LOQ | 0 | 190 (128 *) | 59 (35 *) | 49 (34 *) | |
Percentage of <LOQ | 0.0 | 41.9 (38.6 *) | 23.1 (19.4 *) | 32.5 (27.9 *) | |
Chloride (mg/L) | Arithmetic mean | 12.6 | 13.7 | 6.4 | 16.4 |
Standard deviation | 5.2 | 19.7 | 7.5 | 13.7 | |
Coefficient of variation | 0.4 | 1.4 | 1.2 | 0.8 | |
N of samples | 342 | 454 | 255 | 151 | |
<LOQ | 0 | 1 | 0 | 0 | |
Percentage of <LOQ | 0.0 | 0.2 | 0.0 | 0.0 | |
Nitrate (mg/L) | Arithmetic mean | 33.4 | 3.9 (3.2 *) | 5.4 (6.2 *) | 7.9 (8.0 *) |
Standard deviation | 35.6 | 10.9 (4.7 *) | 9.6 (9.2 *) | 9.9 (10.0 *) | |
Coefficient of variation | 1.1 | 2.8 (1.5 *) | 1.8 (1.5 *) | 1.3 (1.2 *) | |
N of samples | 342 | 454 (332 *) | 255 (180 *) | 151 (122 *) | |
<LOQ | 13 | 349 (240 *) | 167 (102 *) | 74 (61 *) | |
Percentage of <LOQ | 3.8 | 76.9 (72.3 *) | 65.5 (56.7 *) | 49.0 (50.0 *) |
Chemical Substance | GW Body | |||
---|---|---|---|---|
CDGI_19 | CDGI_23 | CSGI_29 | CSGN_25 | |
Arsenic (µg/L) | none | modified Lepeltier method pre-selection method * | none | pre-selection method |
Iron (µg/L) | modified Lepeltier method pre-selection method * | probability plot, modified Lepeltier method | probability plot, modified Lepeltier method | probability plot, modified Lepeltier method |
Sulphate (mg/L) | probability plot, modified Lepeltier method | pre-selection method | modified Lepeltier method pre-selection method * | pre-selection method |
Chloride (mg/L) | probability plot, modified Lepeltier method | probability plot, modified Lepeltier method | probability plot, modified Lepeltier method | probability plot, modified Lepeltier method |
Nitrate (mg/L) | probability plot, modified Lepeltier method | none | none | pre-selection method |
GW Body | Method | Mean + 2SD (µg/L) | Median + 2MAD (µg/L) | UL (µg/L) | |
---|---|---|---|---|---|
CDGI_23 | modified Lepeltier method | 29.5 + 96.6 | 6.1 + 10.2 | 126.1 (Mean + 2SD) | 16.3 (Median + 2MAD) |
pre-selection method * | - | 174.9 | |||
CSGN_25 | pre-selection method * | - | 15.5 |
GW Body | Method | Mean + 2SD (µg/L) | Median + 2MAD (µg/L) | UL (µg/L) | |
---|---|---|---|---|---|
CDGI_19 | modified Lepeltier method | 9.5 + 16.2 | 5.6 + 6.6 | 25.7 (Mean + 2SD) | 12.2 (Median + 2MAD) |
pre-selection method * | - | 47.5 | |||
CDGI_23 | modified Lepeltier method | 1156.4 + 2239.8 | 712.0 + 1421.4 | 3396.2 (Mean + 2SD) | 2133.4 (Median + 2MAD) |
probability plot | - | 1950.0 | |||
CSGI_29 | modified Lepeltier method | 301.2 + 1141.8 | 39.0 + 74.0 | 1443.1 (Mean + 2SD) | 113.0 (Median + 2MAD) |
probability plot | - | 4270.0 | |||
CSGN_25 | modified Lepeltier method | 83.2 + 178.8 | 30.1 + 56.2 | 262.0 (Mean + 2SD) | 86.3 (Median + 2MAD) |
probability plot | - | 292 |
GW Body | Method | Mean + 2SD (mg/L) | Median + 2MAD (mg/L) | UL (mg/L) | |
---|---|---|---|---|---|
CDGI_19 | modified Lepeltier method | 24.8 + 14.8 | 27.9 + 5.6 | 39.6 (Mean + 2SD) | 33.5 (Median + 2MAD) |
probability plot | - | 33.6 | |||
CDGI_23 | pre-selection method * | - | 121.4 | ||
CSGI_29 | modified Lepeltier method | 5.8 + 11.0 | 2.9 + 5.4 | 16.8 (Mean + 2SD) | 8.3 (Median + 2MAD) |
pre-selection method * | - | 44.5 | |||
CSGN_25 | pre-selection method * | - | 87.3 |
GW Body | Method | Mean + 2SD (mg/L) | Median + 2MAD (mg/L) | UL (mg/L) | |
---|---|---|---|---|---|
CDGI_19 | modified Lepeltier method | 3.2 + 1.5 | 3.0 + 1.3 | 4.7 (Mean + 2SD) | 4.3 (Median + 2MAD) |
probability plot | - | 5.0 | |||
CDGI_23 | modified Lepeltier method | 4.9 + 3.1 | 5.1 + 2.4 | 8.0 (Mean + 2SD) | 7.5 (Median + 2MAD) |
probability plot | - | 7.7 | |||
CSGI_29 | modified Lepeltier method | 3.6 + 3.5 | 3.7 + 3.5 | 7.1 (Mean + 2SD) | 7.2 (Median + 2MAD) |
probability plot | - | 6.4 | |||
CSGN_25 | modified Lepeltier method | 4.9 + 7.3 | 4.0 + 5.4 | 12.2 (Mean + 2SD) | 9.4 (Median + 2MAD) |
probability plot | - | 15.3 |
GW Body | Method | Mean + 2SD (mg/L) | Median + 2MAD (mg/L) | UL (mg/L) | |
---|---|---|---|---|---|
CDGI_19 | modified Lepeltier method | 8.6 + 9.6 | 8.7 + 15.6 | 18.2 | 24.3 |
probability plot | - | 19.0 | |||
CSGN_25 | pre-selection method * | - | 29.1 |
GW Body | Substance | UL Estimate | |
---|---|---|---|
90th Percentile | 95th Percentile | ||
CDGI_19 | iron (µg/L) | 29.7 | 47.5 |
CDGI_23 | arsenic (µg/L) | 133.6 | 174.9 |
CSGI_29 | sulphate (mg/L) | 16.4 | 44.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakić, Z.; Kovač, Z.; Parlov, J.; Perković, D. Ambient Background Values of Selected Chemical Substances in Four Groundwater Bodies in the Pannonian Region of Croatia. Water 2020, 12, 2671. https://doi.org/10.3390/w12102671
Nakić Z, Kovač Z, Parlov J, Perković D. Ambient Background Values of Selected Chemical Substances in Four Groundwater Bodies in the Pannonian Region of Croatia. Water. 2020; 12(10):2671. https://doi.org/10.3390/w12102671
Chicago/Turabian StyleNakić, Zoran, Zoran Kovač, Jelena Parlov, and Dario Perković. 2020. "Ambient Background Values of Selected Chemical Substances in Four Groundwater Bodies in the Pannonian Region of Croatia" Water 12, no. 10: 2671. https://doi.org/10.3390/w12102671
APA StyleNakić, Z., Kovač, Z., Parlov, J., & Perković, D. (2020). Ambient Background Values of Selected Chemical Substances in Four Groundwater Bodies in the Pannonian Region of Croatia. Water, 12(10), 2671. https://doi.org/10.3390/w12102671