Silicon Fractionation of Soluble Silicon in Volcanic Ash Soils That May Affect Groundwater Silicon Content on Jeju Island, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Analyzing Groundwater
2.2. Soil Samples
2.2.1. Physicochemical Analyses of Soils
2.2.2. Sequential Si Extraction Procedures
2.3. Statistical Analyses
3. Results and Discussion
3.1. Comparison of the Silica Concentration in Groundwater between Jeju Island and Mainland Korea
3.2. Sequential Si Extraction Procedures
3.2.1. Mobile and Adsorbed Si
3.2.2. Si in Soil Organic Matter (SOM)
3.2.3. Si Occluded in Pedogenic Oxides and Hydroxides
3.2.4. Si in Amorphous Silica
3.2.5. Residual Si
3.3. Relationships between Readily Soluble Si and Other Si Fractions in Soils
3.4. Percentaget Distribution of the Different Si Fraction to Total Si
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mair, A.; Hagedorn, B.; Tillery, S.; El-Kadi, A.I.; Westenbroek, S.; Ha, K.; Koh, G.W. Temporal and spatial variability of groundwater recharge on Jeju Island, Korea. J. Hydrol. 2013, 501, 213–226. [Google Scholar] [CrossRef]
- Lee, B.D.; Oh, Y.H.; Cho, B.W.; Yun, U.; Choo, C.O. Hydrochemical properties of groundwater used for Korea bottled waters in relation to geology. Water 2019, 11, 1043. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, S.; Fujita, M.; Furukawa, K.; Minami, J.I. Indices of drinking water concerned with taste and health. J. Ferment. Technol. 1987, 65, 185–192. [Google Scholar] [CrossRef]
- Gillette-Guyonnet, S.; Andrieu, S.; Vellas, B. The potential influence of silica present in drinking water on Alzheimer’s disease and associated disorders. J. Nutr. Health Aging 2007, 11, 119–124. [Google Scholar] [PubMed]
- Edwardson, J.A.; Moore, P.B.; Ferrier, I.N.; Lilley, J.S.; Newton, G.W.; Barker, J.; Templar, J.; Day, J.P. Effect of silicon on gastrointestinal absorption of aluminum. Lancet 1993, 342, 211–212. [Google Scholar] [CrossRef]
- Calomme, M.R.; Vanden Berghe, D.A. Supplementation of calves with stabilized orthosilicic acid. Biol. Trace Elem. Res. 1997, 56, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Vasanthi, N.; Saleena, L.M.; Raj, S.A. Silicon in day to day life. World Appl. Sci. J. 2012, 17, 1425–1440. [Google Scholar]
- Li, Z.; Karp, H.; Zerlin, A.; Lee, T.Y.A.; Carpenter, C.; Heber, D. Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: A 12-week pilot study. Nutr. J. 2010, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Sommer, M.; Kaczorek, D.; Kuzyakov, Y.; Breuer, J. Silicon pools and fluxes in soils and landscapes—A review. J. Plant Nutr. Soil Sci. 2006, 169, 310–329. [Google Scholar] [CrossRef]
- Choi, H.M.; Lee, J.Y. Changes of groundwater conditions on Jeju volcanic island, Korea: Implications for sustainable agriculture. Afr. J. Agric. Res. 2012, 7, 647–661. [Google Scholar] [CrossRef]
- Park, C.; Seo, J.; Lee, J.; Ha, K.; Koo, M.H. A distributed water balance approach to groundwater recharge estimation for Jeju volcanic island, Korea. Geosci. J. 2014, 18, 193–207. [Google Scholar] [CrossRef]
- Song, Y.C.; Oh, S.S.; Hyun, I.H.; Oh, T.G.; Kim, S.M. Distribution of vital mineral groundwaters in Jeju. Rep. JERI 2009, 2, 254–267. (In Korean) [Google Scholar]
- Kang, K.G. Studies on the Hydrogeochemical Processes and Characteristics of Groundwater in the Pyosun Watershed. Ph.D. Thesis, Jeju National University, Jeju, Korea, 2010. (In Korean). [Google Scholar]
- Ko, H.S.; Kim, Y.; Koh, D.C.; Lee, K.S.; Lee, S.G.; Kang, C.H.; Seong, H.J.; Park, W.B. Hydrogeochemical characterization of groundwater in Jeju Island using principal component analysis and geostatistics. Econ. Environ. Geol. 2005, 38, 435–450. (In Korean) [Google Scholar]
- Koh, D.C.; Cheon, S.H.; Park, K.H. Characterization of groundwater quality and recharge using periodic measurements of hydrogeochemical parameters and environmental tracers in basaltic aquifers of Jeju Island. J. Soil Groundw. Environ. 2007, 12, 57–68. (In Korean) [Google Scholar]
- Cornelis, J.T.; Delvaux, B.; Georg, R.B.; Lucas, Y.; Ranger, J.; Opfergelt, S. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: A review. Biogeosciences 2011, 8, 89–112. [Google Scholar] [CrossRef] [Green Version]
- McKeague, J.A.; Cline, M.G. Silica in soil solutions II. The adsorption of monosilicic acid by soil and by other substances. Can. J. Soil Sci. 1963, 43, 83–96. [Google Scholar] [CrossRef]
- Ugolini, F.C.; Dahlgren, R.A. Soil development in volcanic ash. Glob. Environ. Res. 2002, 6, 69–81. [Google Scholar]
- Shoji, S.; Nanzyo, M.; Dahlgren, R.A. Volcanic ash Soils-Genesis, Properties and Utilization; Elsevier Publishers B.V.: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Ugolini, F.C.; Dahlgren, R.A. Weathering environments and occurrence of imogolite/allophane in selected Andisols and Spodosols. Soil Sci. Soc. Am. J. 1991, 55, 1166–1171. [Google Scholar] [CrossRef]
- Ndayiragije, S.; Delvaux, B. Coexistence of allophane, gibbsite, kaolinite and hydroxy-Al-interlayered 2:1 clay minerals in a perudic Andosol. Geoderma 2003, 117, 203–214. [Google Scholar] [CrossRef]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, R.A. Andisols: Soils with andic soil properties. In Soil Genesis and Classification, 5th ed.; Iowa State Press: Ames, IA, USA, 1997; pp. 231–241. [Google Scholar]
- Park, W.P.; Song, K.C.; Koo, B.J.; Hyun, H.N. Distribution of available silicon of volcanic ash soils in Jeju Island. Appl. Environ. Soil Sci. 2019, 2019. [Google Scholar] [CrossRef]
- Shin, J.S.; Tavernier, R. Composition and genesis of volcanic ash soils in Jeju Island. II. Mineralogy of sand, silt, and clay fractions. J. Min. Soc. Korea 1988, 1, 40–47. [Google Scholar]
- Georgiadis, A.; Sauer, D.; Herrmann, L.; Breuer, J.; Zarei, M.; Stahr, K. Testing a new method for sequential Si-extraction on soils of a temperate-humid climate. Soil Res. 2014, 52, 645–657. [Google Scholar] [CrossRef]
- Makabe, S.; Kakuda, K.I.; Sasaki, Y.; Ando, T.; Fujii, H.; Ando, H. Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan. Soil Sci. Plant Nutr. 2009, 55, 300–308. [Google Scholar] [CrossRef]
- Miretzky, P.; Conzonno, V.; Fernández Cirelli, A. Geochemical processes controlling silica concentrations in groundwaters of the Salado River drainage basin, Argentina. J. Geochem. Explor. 2001, 73, 155–166. [Google Scholar] [CrossRef]
- National Academy of Agricultural Science (NAAS). Taxonomical Classification of Korean Soils; Rural Development Administration: Suwon-si, Korea, 2014. [Google Scholar]
- Burt, R. Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report No. 42; Version 4.0; Natural Resources Conservation Service, US Department of Agriculture: Washington, DC, USA, 2004.
- Allison, L.E. Organic carbon. In Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties; Black, C.A., Evans, D.D., White, J.L., Enisminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1372–1378. [Google Scholar]
- Mizota, C.; van Reeuwijk, L.P. Clay Mineralogy and Chemistry of Soils Formed in Volcanic Material in Diverse Climatic Regions, Soil Monograph 2; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 1989. [Google Scholar]
- Georgiadis, A.; Sauer, D.; Herrmann, L.; Breuer, J.; Zarei, M.; Stahr, K. Development of a method for sequential Si extraction from soils. Geoderma 2013, 209, 251–261. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, C.; Wang, P.; Hou, J.; Qian, J.; Ao, Y.; Liu, C. Speciation of potentially mobile Si in Yangtze Estuary surface sediments: Estimates using a modified sequential extraction technique. Environ. Sci. Pollut. Res. 2016, 23, 18928–18941. [Google Scholar] [CrossRef]
- Wada, K. Allophane and Imogolite. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 1051–1088. [Google Scholar]
- Tsai, C.C.; Chen, Z.S.; Kao, C.I.; Ottner, F.; Kao, S.J.; Zehetner, F. Pedogenic development of volcanic ash soils along a climosequence in Northern Taiwan. Geoderma 2010, 156, 48–59. [Google Scholar] [CrossRef]
- Georgiadis, A.; Sauer, D.; Breuer, J.; Herrmann, L.; Rennert, T.; Stahr, K. Optimising the extraction of amorphous silica by NaOH from soils of temperate-humid climate. Soil Res. 2015, 53, 392–400. [Google Scholar] [CrossRef]
- Klotzbücher, T.; Marxen, A.; Vetterlein, D.; Schneiker, J.; Türke, M.; Van Sinh, N.; Manh, N.H.; Van Chien, H.; Marquez, L.; Villareal, S.; et al. Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl. Ecol. 2015, 16, 665–673. [Google Scholar] [CrossRef]
- Chadwick, O.A.; Gavenda, R.T.; Kelly, E.F.; Ziegler, K.; Olson, C.G.; Crawford Elliott, W.; Hendricks, D.M. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 2003, 202, 195–223. [Google Scholar] [CrossRef]
- Nieuwenhuyse, A.; van Breemen, N. Quantitative aspects of weathering and neoformation in selected Costa Rican volcanic soils. Soil Sci. Soc. Am. J. 1997, 61, 1450–1458. [Google Scholar] [CrossRef]
- Di Figlia, M.G.; Bellanca, A.; Neri, R.; Stefansson, A. Chemical weathering of volcanic rocks at the island of Pantelleria, Italy: Information from soil profile and soil solution investigations. Chem. Geol. 2007, 246, 1–18. [Google Scholar] [CrossRef]
- Wada, K.; Inoue, A. Adsorption of monomeric silica by volcanic ash soils. Soil Sci. Plant Nutr. 1974, 20, 5–15. [Google Scholar] [CrossRef]
- Shoji, S.; Nanzyo, M.; Dahlgren, R.A.; Quantin, P. Evaluation and proposed revisions of criteria for Andosols in the world reference base for soil resources. Soil Sci. 1996, 161, 604–615. [Google Scholar] [CrossRef] [Green Version]
- Imaya, A.; Inagaki, Y.; Tanaka, N.; Ohta, S. Free oxides and short-range ordered mineral properties of brown forest soils developed from different parent materials in the submontane zone of the Kanto and Chubu districts, Japan. Soil Sci. Plant Nutr. 2007, 53, 621–633. [Google Scholar] [CrossRef]
- Cornelis, J.T.; Dumon, M.; Tolossa, A.R.; Delvaux, B.; Deckers, J.; Van Ranst, E. The effect of pedological conditions on the sources and sinks of silicon in the vertic planosols in south-western Ethiopia. Catena 2014, 112, 131–138. [Google Scholar] [CrossRef]
- Saccone, L.; Conley, D.J.; Koning, E.; Sauer, D.; Sommer, M.; Kaczorek, D.; Blecker, S.W.; Kelly, E.F. Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur. J. Soil Sci. 2007, 58, 1446–1459. [Google Scholar] [CrossRef]
- Kendrick, K.J.; Graham, R.C. Pedogenic Silica accumulation in chronosequence soils, Southern California. Soil Sci. Soc. Am. J. 2004, 68, 1295–1303. [Google Scholar] [CrossRef]
- Drouza, S.; Georgoulias, F.A.; Moustakas, N.K. Investigation of soils developed on volcanic materials in Nisyros Island, Greece. Catena 2007, 70, 340–349. [Google Scholar] [CrossRef]
- Song, K.C.; Yoo, S.H. Andic properties of major soils in Cheju Island. III. Conditions for formation of allophane. Korean J. Soil Sci. Fert. 1994, 27, 149–157. (In Korean) [Google Scholar]
- Song, K.C.; Hyun, B.G.; Moon, K.H.; Jeon, S.J.; Lim, H.C. Taxonomical classification of Yongdang series. Korean J. Soil Sci. Fert. 2009, 42, 393–398. (In Korean) [Google Scholar]
- Hwang, J.; Lee, H. The applications and mineral compositions of residual soils distributed in South Korea. Clay Sci. 2009, 14, 253–262. [Google Scholar] [CrossRef]
- Georgiadis, A.; Rinklebe, J.; Straubinger, M.; Rennert, T. Silicon fractionation in Mollic Fluvisols along the Central Elbe River, Germany. Catena 2017, 153, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Drees, L.R.; Wilding, L.P.; Smeck, N.E.; Senkayi, A.L. Silica in soils: Quartz and disordered silica polymorphs. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 913–974. [Google Scholar]
- Yanai, J.; Taniguchi, H.; Atsushi, N. Evaluation of available silicon content and its determining factors of agricultural soils in Japan. Soil Sci. Plant Nutr. 2016, 62, 511–518. [Google Scholar] [CrossRef] [Green Version]
Region | Soil Series | MAP (a) | Land Use/Vegetation | Parent Material | Coordinates | Soil Taxonomy/WRB (b) |
---|---|---|---|---|---|---|
Jeju | Noro (NR) | 3430 | Forest/Latifoliate trees | Pyroclastic materials | 33°18′17.4″ N 126°28′19.1″ E | Acrudoxic Fulvudands/Fulvic Silandic Andosols |
Jeju | Pyeongdae (PD) | 2660 | Pasture/Wide grasses | Pyroclastic materials | 33°26′01.5″ N 126°43′30.4″ E | Acrudoxic Melanudands/Melanic Silandic Andosols |
Jeju | Jeju (JJ) | 1860 | Forest/Pinus thunbergii, | Pyroclastic materials | 33°26′58.5″ N 126°31′09.7″ E | Andic Palehumults/Umbric Cutanic Alisols |
Jeju | Gangjeong (GJ) | 1740 | Forest/Pinus thunbergii, | Pyroclastic materials | 33°27′36.8″ N 126°29′07.7″ E | Mollic Paleudalfs/Cutanic Luvisols |
Gyeonggi | Samgag (SG) | 1370 | Forest/Pinus | Granite | 37°11′17.9″ N 127°36′36.5″ E | Typic Dystrudepts/Haplic Cambisols |
Gangwon | Oesan (OS) | 1220 | Forest/Coniferous and deciduous | Mica schist, mica gneiss | 37°28′8.4″ N 128°33′9.6″ E | Typic Dystrudepts/Leptic Cambisols |
Horizon | Depth | Bd | pH | SOC | Sand | Site | Clay | Fed | Alo + 1/2Feo | Allo. | Si/Al |
---|---|---|---|---|---|---|---|---|---|---|---|
(cm) | (g cm−3) | (CaCl2) | (g kg−1) | (%) | (Molar Ratio) | ||||||
Noro | |||||||||||
A | 0–22 | 0.49 | 5.39 | 122 | 12.1 | 54.8 | 33.0 | 2.59 | 6.10 | 11.6 | 2.12 |
BA | 22–44 | 0.53 | 5.32 | 70.1 | 30.0 | 64.8 | 5.19 | 3.65 | 7.64 | 20.9 | 1.76 |
Bw | 44–87 | 0.50 | 5.76 | 31.2 | 28.7 | 62.0 | 9.34 | 3.82 | 10.3 | 30.8 | 1.61 |
C | 87–160 | 0.51 | 5.90 | 13.9 | 48.7 | 43.2 | 8.17 | 1.88 | 11.8 | 39.0 | 1.51 |
Pyeongdae | |||||||||||
A | 0–18 | 0.51 | 5.24 | 120 | 26.3 | 38.8 | 34.8 | 4.59 | 5.44 | 7.27 | 2.19 |
AB | 18–44 | 0.52 | 5.19 | 87.3 | 13.3 | 65.5 | 21.2 | 4.50 | 7.47 | 15.9 | 2.41 |
Bw1 | 44–73 | 0.60 | 5.35 | 43.7 | 15.5 | 63.1 | 21.4 | 4.08 | 6.17 | 13.3 | 2.44 |
Bw2 | 73–100 | 0.71 | 5.46 | 23.0 | 10.1 | 61.9 | 28.0 | 4.13 | 7.53 | 15.2 | 2.12 |
BC | 100–160 | 0.72 | 5.74 | 15.4 | 34.3 | 47.1 | 18.6 | 3.92 | 8.34 | 19.5 | 2.01 |
Jeju | |||||||||||
Ap | 0–20 | 0.92 | 5.08 | 37.8 | 7.71 | 58.6 | 33.7 | 1.92 | 2.46 | - | 5.69 |
AB | 20–41 | 1.03 | 5.02 | 19.9 | 3.29 | 59.9 | 36.8 | 2.10 | 2.13 | - | 6.23 |
Bt1 | 41–65 | 1.29 | 5.13 | 9.80 | 2.65 | 62.4 | 35.0 | 2.23 | 1.45 | - | 6.16 |
Bt2 | 65–92 | 1.48 | 5.19 | 7.12 | 3.97 | 61.0 | 35.1 | 2.42 | 1.26 | - | 6.07 |
Bt3 | 92–160 | 1.48 | 5.12 | 6.40 | 5.06 | 57.6 | 37.3 | 2.54 | 1.21 | - | 6.21 |
Gangjeong | |||||||||||
Ap | 0–24 | 1.05 | 5.52 | 30.2 | 10.6 | 66.1 | 23.3 | 1.82 | 1.38 | - | 6.36 |
BAt | 24–38 | 1.36 | 5.22 | 13.9 | 4.76 | 70.1 | 25.1 | 1.94 | 0.74 | - | 6.35 |
Bt1 | 38–53 | 1.48 | 5.29 | 5.15 | 5.09 | 63.5 | 31.4 | 2.12 | 0.59 | - | 6.75 |
Bt2 | 53–85 | 1.53 | 5.27 | 2.86 | 3.82 | 59.9 | 36.3 | 2.32 | 0.59 | - | 6.78 |
Bt3 | 85–160 | 1.53 | 5.23 | 1.92 | 3.87 | 58.2 | 38.0 | 1.93 | 0.89 | - | 6.74 |
Samgag | |||||||||||
A | 0–15 | 1.05 | 4.27 | 22.8 | 78.4 | 13. | 7.81 | 0.24 | 0.11 | - | 4.25 |
BA | 15–32 | 1.36 | 4.64 | 9.44 | 74.9 | 16.5 | 8.58 | 0.25 | 0.11 | - | 4.22 |
Bw | 32–50 | 1.48 | 4.77 | 7.69 | 74.0 | 16.6 | 9.37 | 0.32 | 0.11 | - | 4.05 |
C1 | 50–78 | 1.53 | 5.19 | 3.94 | 70.9 | 15.2 | 13.9 | 0.45 | 0.08 | - | 4.03 |
C2 | 78–180 | 1.53 | 5.43 | 2.39 | 69.7 | 14.9 | 15.4 | 0.51 | 0.11 | - | 3.53 |
Oesan | |||||||||||
A | 0–15 | - | 4.77 | 61.1 | 23.8 | 49.6 | 26.6 | 1.40 | 1.15 | - | 5.72 |
BA | 15–34 | - | 4.90 | 24.3 | 21.0 | 54.4 | 24.6 | 1.28 | 1.09 | - | 6.41 |
Bw | 34–63 | - | 4.95 | 11.6 | 24.1 | 54.1 | 21.8 | 1.14 | 0.87 | - | 6.31 |
C | 63–98 | - | 5.22 | 5.13 | 48.3 | 38.7 | 13.0 | 0.87 | 0.62 | - | 6.92 |
Step | Si Fraction | Extractant | Extraction Conditions |
---|---|---|---|
1 | Mobile Si | 0.01 M CaCl2 | SSR (a) 1:10 at 20–25 °C, 24 h |
2 | Adsorbed Si | 0.01 M acetic acid | SSR 1:10 at 20–25 °C, 24 h |
3 | Si bound to soil organic matter | Hot concentrated H2O2 | SSR 1:30 in a water bath at 85 °C until the reaction is completed |
4 | Si occluded in pedogenic oxides and hydroxides | 0.2 M Ammonium oxalate (pH 3) | SSR 1:50 at 20–25 °C in the dark, 4 h |
5 | Si in total amorphous silica | 0.2 M NaOH | SSR 1:400 at 20–25 °C in the steps (5 to 240 h) |
6 | Residual Si in crystalline silicates (b) | ||
Total Si (c) |
Total (n = 28) | Non-Andisols (n = 19) | Andisols (n = 9) | ||||
---|---|---|---|---|---|---|
Mobile Si | Adsorbed Si | Mobile Si | Adsorbed Si | Mobile Si | Adsorbed Si | |
pH | 0.418 * | 0.756 ** | 0.608 ** | 0.505 * | 0.850 ** | 0.950 ** |
Organic C | −0.444 * | 0.125 | −0.550 ** | −0.318 | −0.900 | −0.983 ** |
Sand | −0.337 | −0.317 | −0.613 ** | −0.800 ** | 0.517 | 0.617 |
Silt | 0.103 | 0.451 * | 0.270 | 0.547 * | −0.167 | −0.183 |
Clay | 0.272 | 0.129 | 0.682 ** | 0.858 ** | −0.600 | −0.617 |
Fed | 0.161 | 0.711 ** | 0.544 * | 0.779 ** | −0.567 | −0.333 |
Alo + 1/2Feo | 0.164 | 0.720 ** | 0.057 | 0.426 | 0.883 ** | 0.883 ** |
Allophane | - | - | - | - | 0.767 * | 0.767 * |
Feo/Fed | 0.174 | 0.691 ** | 0.080 | 0.439 | 0.750 * | 0.880 ** |
Mineral Compositions | Untreated | NH4-Oxalate | NaOH |
---|---|---|---|
wt.% | |||
Quartz | 10.9 | 12.7 | 14.9 |
Plagioclase | 16.6 | 10.5 | 24.9 |
K-Feldspars | 4.0 | 4.2 | 4.2 |
Micas/Illite | 5.4 | 5.1 | 3.3 |
Hornblende | 2.0 | 3.1 | 3.2 |
Pyroxene | 5.7 | 7.3 | 15.6 |
Olivine | 9.5 | 9.5 | 7.7 |
Kaolinite | 0.7 | 0.0 | 0.0 |
Chlorite | 3.0 | 3.7 | 4.0 |
Gibbsite | 19.5 | 26.6 | 0.0 |
Hematite/Goethite | 16.8 | 12.7 | 17.5 |
Magnetite | 5.9 | 4.5 | 4.8 |
Total (n = 28) | Non-Andisols (n = 19) | Andisols (n = 9) | ||||
---|---|---|---|---|---|---|
Mobile Si | Adsorbed Si | Mobile Si | Adsorbed Si | Mobile Si | Adsorbed Si | |
Adsorbed Si | 0.661 ** | 0.849 ** | 0.933 ** | |||
Organic Si | 0.539 ** | 0.814 ** | 0.819 ** | 0.672 ** | 0.536 | 0.644 |
Occluded Si | 0.256 | 0.782 ** | 0.251 | 0.591 ** | 0.900 ** | 0.933 ** |
Amorphous Si | 0.514 ** | 0.116 | 0.643 ** | 0.839 ** | 0.450 | 0.550 |
Residual Si | 0.216 | −0.286 | 0.691 ** | 0.655 ** | −0.533 | −0.450 |
Horizon | Depth | Mobile Si | Adsorbed Si | Organic Si | Occluded Si | Amorphous Si | Residual Si |
---|---|---|---|---|---|---|---|
(cm) | % | ||||||
Noro | |||||||
A | 0–22 | 0.009 | 0.015 | 0.40 | 7.19 | 3.46 | 88.9 |
BA | 22–44 | 0.014 | 0.037 | 0.48 | 19.2 | 2.05 | 78.2 |
Bw | 44–87 | 0.036 | 0.209 | 0.69 | 28.0 | 3.19 | 67.9 |
C | 87–160 | 0.044 | 0.332 | 0.56 | 27.9 | 13.7 | 57.5 |
Pyeongdae | |||||||
A | 0–18 | 0.008 | 0.016 | 0.39 | 7.16 | 3.82 | 88.6 |
AB | 18–44 | 0.008 | 0.024 | 0.53 | 8.61 | 3.00 | 87.8 |
Bw1 | 44–73 | 0.011 | 0.077 | 0.62 | 7.80 | 3.27 | 88.2 |
Bw2 | 73–100 | 0.013 | 0.121 | 0.65 | 11.2 | 3.65 | 84.3 |
BC | 100–160 | 0.018 | 0.262 | 0.72 | 16.3 | 7.72 | 74.9 |
Jeju | |||||||
Ap | 0–20 | 0.004 | 0.007 | 0.11 | 0.22 | 4.57 | 95.1 |
AB | 20–41 | 0.005 | 0.007 | 0.09 | 0.20 | 5.15 | 94.5 |
Bt1 | 41–65 | 0.005 | 0.007 | 0.08 | 0.13 | 5.98 | 93.8 |
Bt2 | 65–92 | 0.007 | 0.008 | 0.10 | 0.14 | 7.12 | 92.6 |
Bt3 | 92–160 | 0.009 | 0.010 | 0.13 | 0.13 | 7.99 | 91.7 |
Gangjeong | |||||||
Ap | 0–24 | 0.007 | 0.008 | 0.16 | 0.21 | 6.41 | 93.2 |
BAt | 24–38 | 0.007 | 0.008 | 0.16 | 0.08 | 6.34 | 93.4 |
Bt1 | 38–53 | 0.009 | 0.007 | 0.18 | 0.06 | 5.95 | 93.8 |
Bt2 | 53–85 | 0.013 | 0.009 | 0.23 | 0.07 | 5.87 | 93.8 |
Bt3 | 85–160 | 0.017 | 0.011 | 0.28 | 0.12 | 6.22 | 93.4 |
Samgag | |||||||
A | 0–15 | 0.003 | 0.003 | 0.10 | 0.01 | 1.85 | 98.0 |
BA | 15–32 | 0.003 | 0.002 | 0.08 | 0.01 | 1.90 | 98.0 |
Bw | 32–50 | 0.004 | 0.002 | 0.09 | 0.02 | 2.18 | 97.7 |
C1 | 50–78 | 0.006 | 0.003 | 0.12 | 0.02 | 2.77 | 97.1 |
C2 | 78–180 | 0.008 | 0.006 | 0.17 | 0.02 | 4.00 | 95.8 |
Oesan | |||||||
A | 0–15 | 0.006 | 0.004 | 0.11 | 0.08 | 2.33 | 97.5 |
BA | 15–34 | 0.006 | 0.006 | 0.11 | 0.11 | 2.22 | 97.5 |
Bw | 34–63 | 0.007 | 0.007 | 0.10 | 0.10 | 2.51 | 97.3 |
C | 63–98 | 0.007 | 0.007 | 0.10 | 0.07 | 1.74 | 98.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.-P.; Hyun, H.-N.; Koo, B.-J. Silicon Fractionation of Soluble Silicon in Volcanic Ash Soils That May Affect Groundwater Silicon Content on Jeju Island, Korea. Water 2020, 12, 2686. https://doi.org/10.3390/w12102686
Park W-P, Hyun H-N, Koo B-J. Silicon Fractionation of Soluble Silicon in Volcanic Ash Soils That May Affect Groundwater Silicon Content on Jeju Island, Korea. Water. 2020; 12(10):2686. https://doi.org/10.3390/w12102686
Chicago/Turabian StylePark, Won-Pyo, Hae-Nam Hyun, and Bon-Jun Koo. 2020. "Silicon Fractionation of Soluble Silicon in Volcanic Ash Soils That May Affect Groundwater Silicon Content on Jeju Island, Korea" Water 12, no. 10: 2686. https://doi.org/10.3390/w12102686
APA StylePark, W. -P., Hyun, H. -N., & Koo, B. -J. (2020). Silicon Fractionation of Soluble Silicon in Volcanic Ash Soils That May Affect Groundwater Silicon Content on Jeju Island, Korea. Water, 12(10), 2686. https://doi.org/10.3390/w12102686