An Empirical Orthogonal Function-Based Approach for Spatially- and Temporally-Extensive Soil Moisture Data Combination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. EOF Analysis
2.4. Data Combination
3. Results and Discussion
3.1. Spatial-Temporal Patterns of Soil Moisture
3.2. Controls of Primary Soil Moisture Patterns
3.3. Data Combining Method of Spatially- and Temporally-Extensive Soil Moisture
3.4. Implications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Korres, W.; Reichenau, T.G.; Fiener, P.; Koyama, C.N.; Bogena, H.R.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; et al. Spatio-temporal soil moisture patterns-A meta-analysis using plot to catchment scale. J. Hydrol. 2015, 520, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Grayson, R.B.; Blöschl, G.; Western, A.W.; McMahon, T.A. Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour. 2002, 25, 1313–1334. [Google Scholar] [CrossRef]
- Lin, H.S. Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the Shale Hills Catchment. Vadose Zone J. 2006, 5, 317–340. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44, W01423. [Google Scholar] [CrossRef] [Green Version]
- Takagi, K.; Lin, H.S. Changing controls of soil moisture spatial organization in the Shale Hills Catchment. Geoderma 2012, 173–174, 289–302. [Google Scholar] [CrossRef]
- Owe, M.; Jones, E.B.; Schmugge, T.J. Soil moisture variation patterns observed in Hand Country, South Dakota. Water Resour. Bull. 1982, 18, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Grayson, R.B.; Western, A.W.; Chiew, F.H.S.; Blöschl, G. Preferred states in spatial soil moisture patterns: Local and non local controls. Water Resour. Res. 1997, 33, 2897–2908. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H.S. Interpolation of soil properties based on combined information of spatial structure, sample size and auxiliary variables. Pedosphere 2010, 20, 594–606. [Google Scholar] [CrossRef]
- Shi, Y.; Baldwin, D.C.; Davis, K.J.; Yu, X.; Duffy, C.J.; Lin, H. Simulating high-resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrol. Process. 2015, 29, 4624–4637. [Google Scholar] [CrossRef]
- Dunn, S.M.; Lilly, A. Investigating the relationship between a soils classification and the spatial parameters of a conceptual catchment-scale hydrological model. J. Hydrol. 2001, 252, 157–173. [Google Scholar] [CrossRef]
- Joshi, C.B.; Mohanty, B.P. Physical controls of near surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02. Water Resour. Res. 2010, 46, W12503. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Li, X.; Guo, L.; Lin, H. Hydropedology: Interactions between pedologic and hydrologic processes across spatiotemporal scales. Earth Sci. Rev. 2017, 171, 181–195. [Google Scholar] [CrossRef]
- Beven, K.; Asadullah, A.; Bates, P.; Blyth, E.; Chappell, N.; Child, S.; Cloke, H.; Dadson, S.; Everard, N.; Fowler, H.J.; et al. Developing observational methods to drive future hydrological science: Can we make a start as a community? Hydrol. Proc. 2020, 34, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, D.; Naithani, K.J.; Lin, H. Combined soil-terrain stratification for characterizing catchment-scale soil moisture variation. Geoderma 2017, 285, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.S.; Bouma, J.; Pachepsky, Y.; Western, A.W.; Thompson, J.A.; van Genuchten, M.T.; Vogel, H.; Lilly, A. Hydropedology: Synergistic integration of pedology and hydrology. Water Resour. Res. 2006, 42, W05301. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Castrignanò, A.; Cucci, G.; Lacolla, G.; Lucà, F. Geostatistical modelling of within-field soil and yield variability for management zones delineation: A case study in a durum wheat field. Precis. Agric. 2017, 18, 37–58. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of soil moisture: A hydrologic perspective. Ann. Rev. Earth Planet. Sci. 2002, 30, 149–180. [Google Scholar] [CrossRef] [Green Version]
- Lucà, F.; Buttafuoco, G.; Terranova, O. GIS and soil. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Oxford, UK, 2018; Volume 2, pp. 37–50. [Google Scholar]
- D’Odorico, P.; Porporato, A. Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA 2004, 101, 8848–8851. [Google Scholar] [CrossRef] [Green Version]
- James, A.L.; Roulet, N.T. Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments. J. Hydrol. 2009, 377, 351–366. [Google Scholar] [CrossRef]
- Deiana, R.; Cassiani, G.; Villa, A.; Bagliani, A.; Bruno, V. Calibration of a vadose zone model using water injection monitored by GPR and electrical resistant tomography. Vadose Zone J. 2008, 7, 215–226. [Google Scholar] [CrossRef]
- Guo, L.; Lin, H.; Fan, B.; Nyquist, J.; Toran, L.; Mount, G. Preferential flow through shallow fractured bedrock and a 3D fill-and-spill model of hillslope subsurface hydrology. J. Hydrol. 2019, 576, 430–442. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. Adv. Agron. 2002, 75, 173–243. [Google Scholar]
- Zhao, Y.; Peth, S.; Horn, R.; Hallett, P.; Wang, X.Y.; Giese, M.; Gao, Y.Z. Factors controlling the spatial patterns of soil moisture investigated by multivariate and geostatistical analysis. Ecohydrology 2011, 4, 36–48. [Google Scholar] [CrossRef]
- Jawson, S.D.; Niemann, J.D. Spatial patterns from EOF analysis of soil moisture at a large scale and their dependence on soil, landuse, and topographic properties. Adv. Water Resour. 2007, 30, 366–381. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, J.; Zhu, Q.; Takagi, K.; Graham, C.B.; Lin, H. Hydropedology in the ridge and valley: Soil moisture patterns and preferential flow dynamics in two contrasting landscapes. In Hydropedology (Chapter 12); Lin, H., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 381–411. [Google Scholar]
- Yoo, C.; Kim, S. EOF analysis of surface soil moisture field variability. Adv. Water Resour. 2004, 27, 831–842. [Google Scholar] [CrossRef]
- Wagenet, R.J. Scale issues in agroecological research chains. Nutr. Cycl. Agroecosyst. 1998, 50, 23–34. [Google Scholar] [CrossRef]
- Martini, E.; Wollschläger, U.; Musolff, A.; Werban, U.; Zacharias, S. Principal component analysis of the spatiotemporal pattern of soil moisture and apparent electrical conductivity. Vadose Zone J. 2017, 16, 1–12. [Google Scholar] [CrossRef]
- Blume, T.; Zehe, E.; Bronstert, A. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes. Hydrol. Earth Syst. Sci. 2009, 13, 1215–1234. [Google Scholar] [CrossRef] [Green Version]
- Martinez, C.; Hancock, G.R.; Kalma, J.D.; Wells, T. Spatiotemporal distribution of near-surface and root zone soil moisture at the catchment scale. Hydrol. Process. 2008, 22, 2699–2714. [Google Scholar] [CrossRef]
- Takagi, K.; Lin, H.S. Temporal dynamics of soil moisture spatial variability in the shale hills critical zone observatory. Vadose Zone J. 2011, 10, 832–842. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, X. Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. Eur. J. Soil Sci. 2008, 59, 34–49. [Google Scholar] [CrossRef]
- Perry, M.A.; Niemann, J.D. Generation of soil moisture patterns at the catchment scale by EOF interpolation. Hydrol. Earth. Syst. Sci. 2008, 12, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Lucà, F.; Buttafuoco, G.; Robustelli, G.; Malafronte, A. Spatial modelling and uncertainty assessment of pyroclastic cover thickness in the Sorrento Peninsula. Environ. Earth Sci. 2014, 72, 3353–3367. [Google Scholar] [CrossRef]
- Henninger, D.L.; Peterson, G.W.; Engman, E.T. Surface soil moisture within a watershed: Variations, factors influencing, and relationships to surface runoff. Soil Sci. Soc. Am. J. 1976, 40, 773–776. [Google Scholar] [CrossRef]
- Brocca, L.; Morbidelli, R.; Melone, F.; Moramarco, T. Soil moisture spatial variability in experimental areas of central Italy. J. Hydrol. 2007, 333, 356–373. [Google Scholar] [CrossRef]
- Gu, W.Z.; Liu, J.F.; Lin, H.S.; Lin, J.; Liu, H.W.; Liao, A.-M.; Wang, N.; Wang, W.Z.; Ma, T.; Yang, N.; et al. Why hydrological maze: The hydropedological trigger? Review of experiments at Chuzhou Hydrology Laboratory. Vadose Zone J. 2018, 17, 170174. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Peth, S.; Wang, X.Y.; Lin, H.S.; Horn, R. Temporal stability of surface soil moisture spatial patterns and their controlling factors in a semi-arid steppe. Hydrol. Proc. 2010, 24, 2507–2519. [Google Scholar] [CrossRef]
- Temimi, M.; Leconte, R.; Chaouch, N.; Sukumal, P.; Khanbilvardi, R.; Brissette, F. A combination of remote sensing data and topographic attributes for the spatial and temporal monitoring of soil wetness. J. Hydrol. 2010, 388, 28–40. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Depth | EOFs | DB | Clay | Silt | RF | E | TWI | SP | UCA | PC |
---|---|---|---|---|---|---|---|---|---|---|
10 cm | EOF1 (75.5%) | ** | ** | ** | ** | ** | ||||
EOF2 (79.7%) | ** | ** | ** | ** | ** | ** | ** | ** | ||
EOF3 (83.5%) | * | |||||||||
EOF4 (86.8%) | ** | |||||||||
20 cm | EOF1 (85.2%) | ** | ** | ** | ** | ** | ** | ** | ** | |
40 cm | EOF1 (89.7%) | * | * | * | ** | |||||
EOF2 (92.7%) | * | ** | ** | ** | ** | |||||
60 cm | EOF1 (83.5%) | ** | * | * | * | |||||
EOF2 (89.2%) | * | * | * | |||||||
EOF3 (92.1%) | * | * | * | ** | ** | |||||
80 cm | EOF1 (87.2%) | ** | ** | ** | * | ** | ** | |||
EOF2 (91.8%) | ** | ** | * | |||||||
100 cm | EOF1 (88.9%) | ** | ||||||||
EOF2 (92.9%) | ** | ** | * | |||||||
EOF3 (95.8%) | ||||||||||
0–0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | 0.4–0.5 | 0.5–0.6 | 0.6–0.7 | 0.7–0.8 | 0.8–0.9 | 0.9–1.0 | |
Correlation coefficient scale | * significant at p < 0.05; ** significant at p < 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, F.; Yao, R.; Jiao, W.; Hill, R.L. An Empirical Orthogonal Function-Based Approach for Spatially- and Temporally-Extensive Soil Moisture Data Combination. Water 2020, 12, 2919. https://doi.org/10.3390/w12102919
Zhao Y, Li F, Yao R, Jiao W, Hill RL. An Empirical Orthogonal Function-Based Approach for Spatially- and Temporally-Extensive Soil Moisture Data Combination. Water. 2020; 12(10):2919. https://doi.org/10.3390/w12102919
Chicago/Turabian StyleZhao, Ying, Fei Li, Rongjiang Yao, Wentao Jiao, and Robert Lee Hill. 2020. "An Empirical Orthogonal Function-Based Approach for Spatially- and Temporally-Extensive Soil Moisture Data Combination" Water 12, no. 10: 2919. https://doi.org/10.3390/w12102919
APA StyleZhao, Y., Li, F., Yao, R., Jiao, W., & Hill, R. L. (2020). An Empirical Orthogonal Function-Based Approach for Spatially- and Temporally-Extensive Soil Moisture Data Combination. Water, 12(10), 2919. https://doi.org/10.3390/w12102919