Advances in Modeling and Management of Urban Water Networks
Abstract
:1. Introduction
2. Overview of the Special Issue
2.1. Water Distribution Systems
2.1.1. Asset Management
2.1.2. Modelling of Demand and Hydraulics
2.1.3. Energy Recovery
2.1.4. Pipe Burst Identification and Leakage Reduction
2.2. Urban Drainage Systems
2.2.1. Asset Management
2.2.2. Modelling of Flow and Quality
2.3. Urban Rivers
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dandy, G.C.; Engelhardt, M. Optimal scheduling of water pipe replacement using genetic algorithms. J. Water Resour. Plan. Manag. 2001, 127, 214–223. [Google Scholar] [CrossRef]
- Kleiner, Y.; Adams, B.J.; Rogers, S. Water Distribution Network Renewal Planning. J. Comput. Civ. Eng. 2001, 15, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Giustolisi, O.; Laucelli, D.; Savic, D. Development of rehabilitation plans for water mains replacement considering risk and cost-benefit assessment. Civ. Eng. Environ. Syst. 2006, 23, 175–190. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M. Multi-objective optimization of repair and leakage detection scheduling in water distribution systems. J. Water Resour. Plan. Manag. 2009, 135, 426–439. [Google Scholar] [CrossRef]
- Cutore, P.; Campisano, A.; Kapelan, Z.; Modica, C.; Savic, D. Probabilistic prediction of urban water consumption using the SCEM-UA algorithm. Urban Water J. 2008, 5, 125–132. [Google Scholar] [CrossRef]
- Creaco, E.; Blokker, E.J.M.; Buchberger, S.G. Models for Generating Household Water Demand Pulses: Literature Review and Comparison. J. Water Resour. Plan. Manag. 2017, 143, 04017013. [Google Scholar] [CrossRef]
- Pacchin, E.; Gagliardi, F.; Alvisi, S.; Franchini, M. A Comparison of Short-Term Water Demand Forecasting Models. Water Resour. Manag. 2019, 33, 1481–1497. [Google Scholar] [CrossRef]
- Zubaidi, S.; Abdulkareem, I.; Hashim, K.; Al-Bugharbee, H.; Ridha, H.; Gharghan, S.; Al-Qaim, F.; Muradov, M.; Kot, P.; Al-Khaddar, R.G. Hybridised Artificial Neural Network Model with Slime Mould Algorithm: A Novel Methodology for Prediction of Urban Stochastic Water Demand. Water 2020, 12, 2692. [Google Scholar] [CrossRef]
- Creaco, E.; Franchini, M. Comparison of Newton Raphson Global and Loop Algorithms for Water Distribution Network Resolution. J. Hydraul. Eng. 2014, 140, 313–321. [Google Scholar] [CrossRef]
- Farina, G.; Creaco, E.; Franchini, M. Using EPANET for modelling water distribution systems with users along the pipes. Civ. Eng. Environ. Syst. 2014, 31, 36–50. [Google Scholar] [CrossRef]
- Gorev, N.B.; Gorev, V.N.; Kodzhespirova, I.F.; Shedlovsky, I.A.; Sivakumar, P. Simulating control valves in water distribution systems as pipes of variable resistance. J. Water Resour. Plan. Manag. 2018, 144, 06018008. [Google Scholar] [CrossRef]
- Piller, O.; Elhay, S.; Deuerlein, J.W.; Simpson, A.R. A Content-Based Active-Set Method for Pressure-Dependent Models of Water Distribution Systems with Flow Controls. J. Water Resour. Plan. Manag. 2020, 146, 04020009. [Google Scholar] [CrossRef] [Green Version]
- Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H. Energy production in water distribution networks: A PAT design strategy. Water Resour. Manag. 2012, 26, 3947–3959. [Google Scholar] [CrossRef]
- Fecarotta, O.; McNabola, A. Optimal location of pump as turbines (PATs) in water distribution networks to recover energy and reduce leakage. Water Resour. Manag. 2017, 31, 5043–5059. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Hydraulic and Electric Regulation of a Prototype for Real-Time Control of Pressure and Hydropower Generation in a Water Distribution Network. J. Water Resour. Plann. Manag. 2018, 144, 04018072. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Operation of a Prototype for Real Time Control of Pressure and Hydropower Generation in Water Distribution Networks. Water Resour. Manag. 2019, 33, 697–712. [Google Scholar] [CrossRef]
- Romano, M.; Kapelan, Z.; Savić, D. Automated Detection of Pipe Bursts and Other Events in Water Distribution Systems. J. Water Resour. Plann. Manag. 2014, 140, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Capponi, C.; Ferrante, M.; Zecchin, A.C.; Gong, J. Leak Detection in a Branched System by Inverse Transient Analysis with the Admittance Matrix Method. Water Resour. Manag. 2017, 31, 4075–4089. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Xu, G.; Fang, H.; Zhao, D. Study on Pipe Burst Detection Frame Based on Water Distribution Model and Monitoring System. Water 2019, 11, 1363. [Google Scholar] [CrossRef] [Green Version]
- Campisano, A.; Modica, C.; Reitano, S.; Ugarelli, R.; Bagherian, S. Field-oriented methodology for real-time pressure control to reduce leakage in water distribution networks. J. Water Resour. Plan. Manag. 2016, 142, 04016057. [Google Scholar] [CrossRef]
- Creaco, E.; Campisano, A.; Fontana, N.; Marini, G.; Page, P.R.; Walski, T. Real time control of water distribution networks: A state-of-the-art review. Water Res. 2019, 161, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Galuppini, G.; Magni, L.; Creaco, E. Stability and Robustness of Real-Time Pressure Control in Water Distribution Systems. J. Hydraul. Eng. 2020, 146, 04020023. [Google Scholar] [CrossRef]
- Duan, H.-F.; Li, F.; Yan, H. Multi-objective optimal design of detention tanks in the urban stormwater drainage system: LID implementation and analysis. Water Resour. Manag. 2016, 30, 4635–4648. [Google Scholar] [CrossRef]
- Cunha, M.C.; Zeferino, J.A.; Simões, N.E.; Saldarriaga, J.G. Optimal location and sizing of storage units in a drainage system. Env. Model. Softw. 2016, 83, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Starzec, M. A Critical Evaluation of the Methods for the Determination of Required Volumes for Detention Tank. Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2018/20/e3sconf_infraeko2018_00088/e3sconf_infraeko2018_00088.html (accessed on 21 October 2020).
- Vasconcelos, J.G.; Wright, S.J.; Roe, P.L. Numerical oscillations in pipe-filling bore predictions by shock-capturing models. J. Hydraul. Eng. 2009, 135, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Malekpour, A.; Karney, B.W. Spurious numerical oscillations in the Preissmann slot method: Origin and suppression. J. Hydraul. Eng. 2016, 142, 04015060. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Lee, S.; Noh, S.J.; Kim, Y.; Noh, J. Hybrid numerical scheme of Preissmann slot model for transient mixed flows. Water 2018, 10, 899. [Google Scholar] [CrossRef] [Green Version]
- Métadier, M.; Bertrand-Krajewski, J.-L. The use of long-term on-line turbidity measurements for the calculation of urban stormwater pollutant concentrations, loads, pollutographs and intra-event fluxes. Water Res. 2012, 46, 6836–6856. [Google Scholar] [CrossRef]
- Creaco, E.; Berardi, L.; Sun, S.; Giustolisi, O.; Savic, D. Selection of relevant input variables in storm water quality modeling by multiobjective evolutionary polynomial regression paradigm. Water Resour. Res. 2016, 52, 2403–2419. [Google Scholar] [CrossRef] [Green Version]
- Kozak, C.; Fernandes, C.V.S.; Braga, S.M.; Do Prado, L.L.; Froehner, S.; Hilgert, S.G. Water quality dynamic during rainfall episodes: Integrated approach to assess diffuse pollution using automatic sampling. Environ. Monit. Assess. 2019, 191, 402. [Google Scholar] [CrossRef]
- Seco, I.; Valentín, M.G.; Schellart, A.; Tait, S. Erosion resistance and behaviour of highly organic in-sewer sediment. Water Sci. Technol. 2014, 69, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Regueiro-Picallo, M.; Anta, J.; Suárez, J.; Puertas, J.; Jácome, A.; Naves, J. Characterisation of sediments during transport of solids in circular sewer pipes. Water Sci. Technol. 2018, 2017, 8–15. [Google Scholar] [CrossRef]
- Shahsavari, G.; Arnaud-Fassetta, G.; Campisano, A. A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits. Water Res. 2017, 118, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Follstad Shah, J. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar]
- Beechie, T.; Imaki, H. Predicting natural channel patterns based on landscape and geomorphic controls in the Columbia River basin, USA. Water Resour. Res. 2014, 50, 39–57. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Tian, F.; Sivapalan, M. From channelization to restoration: Sociohydrologic modeling with changing community preferences in the Kissimmee River Basin, Florida. Water Resour. Res. 2016, 52, 1227–1244. [Google Scholar] [CrossRef] [Green Version]
- Nafi, A.; Brans, J. Cost–Benefit Prediction of Asset Management Actions on Water Distribution Networks. Water 2019, 11, 1542. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, P.; Courtice, G.; Naser, G.; Mohammadi, H. Nonlinear Dynamic Modeling of Urban Water Consumption Using Chaotic Approach (Case Study: City of Kelowna). Water 2020, 12, 753. [Google Scholar] [CrossRef] [Green Version]
- Mentes, A.; Galiatsatou, P.; Spyrou, D.; Samaras, A.; Stournara, P. Hydraulic Simulation and Analysis of an Urban Center’s Aqueducts Using Emergency Scenarios for Network Operation: The Case of Thessaloniki City in Greece. Water 2020, 12, 1627. [Google Scholar] [CrossRef]
- Creaco, E.; Galuppini, G.; Campisano, A.; Ciaponi, C.; Pezzinga, G. A Bi-Objective Approach for Optimizing the Installation of PATs in Systems of Transmission Mains. Water 2020, 12, 330. [Google Scholar] [CrossRef] [Green Version]
- Mirshafiei, P.; Sadeghi-Niaraki, A.; Shakeri, M.; Choi, S. Geospatial Information System-Based Modeling Approach for Leakage Management in Urban Water Distribution Networks. Water 2019, 11, 1736. [Google Scholar] [CrossRef] [Green Version]
- Manzi, D.; Brentan, B.; Meirelles, G.; Izquierdo, J.; Luvizotto Jr., E. Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location. Water 2019, 11, 2279. [Google Scholar] [CrossRef] [Green Version]
- Bosco, C.; Campisano, A.; Modica, C.; Pezzinga, G. Application of Rehabilitation and Active Pressure Control Strategies for Leakage Reduction in a Case-Study Network. Water 2020, 12, 2215. [Google Scholar] [CrossRef]
- Shao, Y.; Yao, H.; Zhang, T.; Chu, S.; Liu, X. An Improved Genetic Algorithm for Optimal Layout of Flow Meters and Valves in Water Network Partitioning. Water 2019, 11, 1087. [Google Scholar] [CrossRef] [Green Version]
- Ngamalieu-Nengoue, U.A.; Iglesias-Rey, P.L.; Martínez-Solano, J.; Mora-Meliá, D.; Saldarriaga Valderrama, J.G. Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water 2019, 11, 515. [Google Scholar] [CrossRef] [Green Version]
- Ngamalieu-Nengoue, U.A.; Martínez-Solano, J.; Iglesias-Rey, P.L.; Mora-Meliá, D. Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water 2019, 11, 935. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Guan, G.; Yang, Z. Suppress Numerical Oscillations in Transient Mixed Flow Simulations with a Modified HLL Solver. Water 2020, 12, 1245. [Google Scholar] [CrossRef]
- Bailey, O.; Zlatanovic, L.; van der Hoek, J.P.; Kapelan, Z.; Blokker, M.; Arnot, T.; Hofman, J. A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios. Water 2020, 12, 1187. [Google Scholar] [CrossRef] [Green Version]
- Rinas, M.; Tränckner, J.; Koegst, T. Sediment Transport in Sewage Pressure Pipes, Part I: Continuous Determination of Settling and Erosion Characteristics by In-Situ TSS Monitoring Inside a Pressure Pipe in Northern Germany. Water 2019, 11, 2125. [Google Scholar] [CrossRef] [Green Version]
- Rinas, M.; Fricke, A.; Tränckner, J.; Frischmuth, K.; Koegst, T. Sediment Transport in Sewage Pressure Pipes, Part II: 1 D Numerical Simulation. Water 2020, 12, 282. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Peng, W.; Dong, F.; Liu, X.; Ou, N. Simulating Flow of An Urban River Course with Complex Cross Sections Based on the MIKE21 FM Model. Water 2020, 12, 761. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campisano, A.; Creaco, E. Advances in Modeling and Management of Urban Water Networks. Water 2020, 12, 2956. https://doi.org/10.3390/w12112956
Campisano A, Creaco E. Advances in Modeling and Management of Urban Water Networks. Water. 2020; 12(11):2956. https://doi.org/10.3390/w12112956
Chicago/Turabian StyleCampisano, Alberto, and Enrico Creaco. 2020. "Advances in Modeling and Management of Urban Water Networks" Water 12, no. 11: 2956. https://doi.org/10.3390/w12112956
APA StyleCampisano, A., & Creaco, E. (2020). Advances in Modeling and Management of Urban Water Networks. Water, 12(11), 2956. https://doi.org/10.3390/w12112956