A Method for Estimating the Risk of Dam Reservoir Silting in Fire-Prone Watersheds: A Study in Douro River, Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Liberta’, G.; Branco, A.; De Rigo, D.; Ferrari, D.; Maianti, P.; Artes Vivancos, T.; Pfeiffer, H.; et al. Forest Fires in Europe, Middle East and North Africa 2018; EUR 29856; European Union: Luxembourg City, Luxembourg, 2019; ISBN 978-92-76-11234-1. [Google Scholar]
- Chakraborty, A.; Ghosh, S.; Mukhopadhyay, P.; Dinara, S.M.; Bag, A.; Mahata, M.K.; Kumar, R.; Das, S.; Sanjay, J.; Majumdar, S.; et al. Trapping effect analysis of AlGaN/InGaN/GaN Heterostructure by conductance frequency measurement. In Proceedings of the MRS Proceedings, San Francisco, CA, USA, 21–25 April 2014; Volume XXXIII, pp. 81–87. [Google Scholar]
- Yang, C.; Fraga, H.; van Ieperen, W.; Santos, J.A. Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agric. Syst. 2020, 182, 102844. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Barros, A.M.G.; Pinto, A.; Santos, J.A. Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. J. Geophys. Res. Biogeosci. 2016, 121, 2141–2157. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Serpa, D.; Nunes, J.P.C.; Prats, S.A.; Neves, R.; Keizer, J.J. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environ. Res. 2018, 165, 365–378. [Google Scholar] [CrossRef]
- Fernandes, P.M. Forest Management of Mediterranean Forest. In Forest Fuel Management for Fire Mitigation under Climate Change; Lucas-Borja, M.E., Ed.; Nova Science Publisher: Lisbon, Portugal, 2013; Chapter 3; pp. 31–42. ISBN 978-1-62417-868-9. [Google Scholar]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Pausas, J.G.; Paula, S. Fuel shapes the fire-climate relationship: Evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 2012, 21, 1074–1082. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [Green Version]
- APA. Relatório do Estado do Ambiente 2018; APA: Lisboa, Portugal, 2018. [Google Scholar]
- IPCC. Climate Change 2014 Synthesis Report Summary Chapter for Policymakers; IPCC: Geneva, Switzerland, 2014; ISBN 978-92-9169-143-2. [Google Scholar]
- Nunes, A.N. Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Mallinis, G.; Gitas, I.Z.; Tasionas, G.; Maris, F. Multitemporal Monitoring of Land Degradation Risk Due to Soil Loss in a Fire-Prone Mediterranean Landscape Using Multi-decadal Landsat Imagery. Water Resour. Manag. 2016, 30, 1255–1269. [Google Scholar] [CrossRef]
- Varela, M.E.; Benito, E.; KEIZER, J.J. Wildfire effects on soil erodibility of woodlands in NW Spain. L. Degrad. Dev. 2010, 21, 75–82. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration (USDA): Washington, DC, USA, 1978; pp. 285–291.
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.J.D.; Coelho, C.O.A.; Boulet, A.K.; Leighton-Boyce, G.; Keizer, J.J.; Ritsema, C.J. Influence of burning intensity on water repellency and hydrological processes at forest and shrub sites in Portugal. Aust. J. Soil Res. 2005, 43, 327–336. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Coelho, C.O.A.; Ritsema, C.J.; Boulet, A.K.; Keizer, J.J. Soil and water degradation processes in burned areas: Lessons learned from a nested approach. Catena 2008, 74, 273–285. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, D.A. Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. Int. J. Wildl. Fire 2009, 18, 96–115. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Wilkinson, S.N.; Wallbrink, P.J.; Hancock, G.J.; Blake, W.H.; Shakesby, R.A.; Doerr, S.H. Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Geomorphology 2009, 110, 140–151. [Google Scholar] [CrossRef]
- Mama, C.N.; Okafor, F.O. Siltation in Reservoirs. Niger. J. Technol. 2011, 30, 85–90. [Google Scholar]
- Lourenco, L.; Nunes, A.N.; Bento-Goncalves, A.; Vieir, A. Soil Erosion After Wildfires in Portugal: What Happens When Heavy Rainfall Events Occur? In Research on Soil Erosion; InTechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Baccari, N.; Boussema, M.R.; Lamachère, J.M.; Nasri, S. Efficiency of contour benches, filling-in and silting-up of a hillside reservoir in a semi-arid climate in Tunisia. Comptes Rendus-Geosci. 2008, 340, 38–48. [Google Scholar] [CrossRef]
- Garbrecht, J.D.; Garbrecht, G.K.H. Siltation behind dams in antiquity. In Water Resources and Environmental History; American Society of Civil: Salt Lake City, UT, USA, 2004. [Google Scholar]
- Sawaske, S.R.; Freyberg, D.L. A comparison of past small dam removals in highly sediment-impacted systems in the U.S. Geomorphology 2012, 151–152, 50–58. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, S.; Liu, X.; Chen, D.; Chen, J.; Bu, K.; Yang, J.; Chang, L. The effects of spatiotemporal changes in land degradation on ecosystem services values in Sanjiang Plain, China. Remote Sens. 2016, 8, 917. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.S.; Bi, C.F.; Cao, M.M.; Li, H.E.; Wang, X.H.; Wu, W. Simulation of sediment retention effects of the double seabuckthorn plant flexible dams in the Pisha Sandstone area of China. Ecol. Eng. 2014, 71, 21–31. [Google Scholar] [CrossRef]
- Kovacs, A.S.; Fulop, B.; Honti, M. Detection of hot spots of soil erosion and reservoir siltation in ungauged Mediterranean catchments. Energy Procedia 2012, 18, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Lahlou, A. The silting of Moroccan dams. In Proceedings of the Porto Alegre Symposium, Porto Alegre, Brazil, 11–15 December 1988; IAHS: Wallingford, UK, 1988; p. 174. [Google Scholar]
- Romero-Díaz, A.; Alonso-Sarriá, F.; Martínez-Lloris, M. Erosion rates obtained from check-dam sedimentation (SE Spain). A multi-method comparison. Catena 2007, 71, 172–178. [Google Scholar] [CrossRef]
- Chanson, H.; James, D.P. Siltation of Australian Reservoirs: Some Observations and Dam Safety Implications. In Proceedings of the 28th IAHR Congress, Graz, Austria, 22–27 August 1999; International Association for Hydro-Environment Engineering and Research (IAHR): Graz, Austria, 1999. [Google Scholar]
- Chanson, H. Extreme Reservoir Siltation: A Case Study. Available online: www.uq.edu.au/~e2hchans/ressilt.html (accessed on 20 June 2020).
- Riggs, H.R.; Cox, D.T.; Naito, C.J.; Kobayashi, M.H.; Aghl, P.P.; Ko, H.T.S.; Khowitar, E. Experimental and Analytical Study of Water-Driven Debris Impact Forces on Structures. J. Offshore Mech. Arct. Eng. 2014, 136. [Google Scholar] [CrossRef]
- Dias, J.A. Evolução da Zona Costeira Portuguesa: Forçamentos Antrópicos e Naturais. Encontros CientíficosTour. Manag. 2005, 1, 7–27. [Google Scholar]
- Pereira, A.R.; Dias, J.A.; Ferreira, O. Estudo Sintético de Diagnóstico da Geomorfologia e da Dinâmica Sedimentar dos Troços Costeiros entre Espinho e Nazaré; ESAMIN/Instituto de Conservação da Natureza: Lisbon, Portugal, 1994. [Google Scholar]
- Dendy, F.M.; Champion, W.A.; Wilson, R.B. Reservoir Sedimentation Surveys in the United States. Geophys. Monogr. Ser. 1973, 17, 349–357. [Google Scholar] [CrossRef]
- Goldsmith, E.; Hildyard, N. Sedimentation: The way of all dams. In The Social and Environmental Effects of Large Dams: Volume 1; Overview wadebridge Ecological Centre, Worthyvale Manor: Camelford, UK, 1984. [Google Scholar]
- Batista Lopes, J.W.; De Araújo Neto, J.R.; Pinheiro, E.A.R. Produção de sedimentos e assoreamento em reservatório no semiárido: O caso do açude marengo, Ceará. Geoambiente On-line 2015, 24. [Google Scholar] [CrossRef] [Green Version]
- APA Comissão Nacional Portuguesa das Grandes Barragens. Available online: https://cnpgb.apambiente.pt/gr_barragens/gbportugal/Lista.htm (accessed on 29 April 2020).
- Cortes, R.M.V.; Peredo, A.; Terêncio, D.P.S.; Filipe, L.; Fernandes, S.; Moura, J.P.; Jesus, J.J.B.; Magalhães, M.P.M.; Ferreira, P.J.S.; Pacheco, F.A.L. Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal. Water 2019, 11, 693. [Google Scholar] [CrossRef] [Green Version]
- APA Relatório de Base—(Caracterização e diagnóstico da região hidrográfica). Plano Gestão da Região Hidrográfica do Douro PGRH3. Portugal. 2016, p. 376. Available online: https://apambiente.pt/_zdata/Politicas/Agua/PlaneamentoeGestao/PGRH/2016-2021/PTRH3/PGRH3_Parte1.pdf (accessed on 1 July 2020).
- Gómez-Gesteira, M.; Gimeno, L.; DeCastro, M.; Lorenzo, M.N.; Alvarez, I.; Nieto, R.; Taboada, J.J.; Crespo, A.J.C.; Ramos, A.M.; Iglesias, I.; et al. The state of climate in NW Iberia. Clim. Res. 2011, 48, 109–144. [Google Scholar] [CrossRef] [Green Version]
- ICNF Defesa da Floresta Contra Incêndios. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc/mapas (accessed on 20 March 2020).
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildl. Fire 2009, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Karavitis, C.A. Uso da Água na Europa. In Land Care in Desertification Affected Areas; ICNF: Lisbon, Portugal, 2009; Available online: http://www2.icnf.pt/portal/pn/biodiversidade/ei/unccd-PT/ond/lucinda/b5_booklet_final_pt_rev2 (accessed on 1 July 2020).
- ESRI ArcMap, Version 10; Esri: Redlands, CA, USA, 2010.
- Pacheco, F.A.L.; Sanches Fernandes, L.F. Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water. Sci. Total Environ. 2016, 548–549, 173–188. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Forest Fires in Europe: 2001 Fire Campaign; Report No 2; European Commission: Roma, Italy, 2002; Available online: https://effis.jrc.ec.europa.eu/media/cms_page_media/40/07-forest-fires-in-europe-2001-fire-campaign.pdf (accessed on 1 July 2020).
- EEA. Water Use and Environmental Pressures. Available online: https://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures (accessed on 15 September 2019).
- Karali, A.; Hatzaki, M.; Giannakopoulos, C.; Roussos, A.; Xanthopoulos, G.; Tenentes, V. Sensitivity and evaluation of current fire risk and future projections due to climate change: The case study of Greece. Nat. Hazards Earth Syst. Sci. 2014, 14, 143. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. Water resources planning for a river basin with recurrent wildfires. Sci. Total Environ. 2015, 526, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Salesa, D.; Minervino Amodio, A.; Rosskopf, C.M.; Garfì, V.; Terol, E.; Cerdà, A. Three topographical approaches to survey soil erosion on a mountain trail affected by a forest fire. Barranc de la Manesa, Llutxent, Eastern Iberian Peninsula. J. Environ. Manag. 2020, 264, 110491. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Valle Junior, R.F. Soil losses in rural watersheds with environmental land use conflicts. Sci. Total Environ. 2014, 485–486, 110–120. [Google Scholar] [CrossRef]
- Baird, M.; Zabowski, D.; Everett, R.L. Wildfire effects on carbon and nitrogen in inland coniferous forests. Plant Soil 1999, 209, 233–243. [Google Scholar] [CrossRef]
- Chambers, D.P.; Attiwill, P.M. The ash-bed effect in Eucalyptus regnans forest:Chemical, physical and microbiological changes in soil after heating or partial sterilisation. Aust. J. Bot. 1994, 42, 739–749. [Google Scholar] [CrossRef]
- Lane, P.N.J.; Sheridan, G.J.; Noske, P.J.; Sherwin, C.B. Phosphorus and nitrogen exports from SE Australian forests following wildfire. J. Hydrol. 2008, 36, 186–198. [Google Scholar] [CrossRef]
- Blake, W.H.; Theocharopoulos, S.P.; Skoulikidis, N.; Clark, P.; Tountas, P.; Hartley, R.; Amaxidis, Y. Wildfire impacts on hillslope sediment and phosphorus yields. J. Soils Sediments 2010, 10, 671–682. [Google Scholar] [CrossRef]
- Gimeno-García, E.; Andreu, V.; Rubio, J.L. Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. Eur. J. Soil Sci. 2000, 51, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Howard, P. Phosphorus and water: The USGS Water Science School. Available online: https://water.usgs.gov/edu/phosphorus.html (accessed on 1 July 2020).
- Wasley, D. Phosphorus: Sources, Forms, Impact on Water Quality; Minnesota Pollution Control Agency: St Paul, MN, USA, 2007. [Google Scholar]
ID | River Name | Category | Barrier | Type | Land Use Area | Siltation Risk Rank |
---|---|---|---|---|---|---|
1436 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 1 |
1437 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 2 |
473 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 3 |
479 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 4 |
478 | Corgo | Principal | Weirs | Concrete | Forest and seminatural | 5 |
477 | Corgo | Principal | Weirs | Concrete | Forest and seminatural | 6 |
1238 | Corgo | Principal | Weirs | Riprap | Agricultural | 7 |
474 | Corgo | Principal | Weirs | Riprap | Agricultural | 8 |
1236 | Corgo | Principal | Weirs | Concrete | Forest and seminatural | 9 |
1296 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 10 |
1297 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 11 |
1474 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 12 |
1475 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 13 |
1512 | Corgo | Principal | Weirs | Riprap | Agricultural | 14 |
1237 | Corgo | Principal | Weirs | Concrete | Forest and seminatural | 15 |
1240 | Corgo | Principal | Weirs | Riprap | Forest and seminatural | 16 |
1234 | Corgo | Principal | Weirs | Riprap | Agricultural | 17 |
332 | Paiva | Principal | Weirs | Riprap | Forest and seminatural | 18 |
336 | Paiva | Principal | Weirs | Concrete | Forest and seminatural | 19 |
333 | Paiva | Principal | Weirs | Concrete | Forest and seminatural | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terêncio, D.P.S.; Cortes, R.M.V.; Pacheco, F.A.L.; Moura, J.P.; Fernandes, L.F.S. A Method for Estimating the Risk of Dam Reservoir Silting in Fire-Prone Watersheds: A Study in Douro River, Portugal. Water 2020, 12, 2959. https://doi.org/10.3390/w12112959
Terêncio DPS, Cortes RMV, Pacheco FAL, Moura JP, Fernandes LFS. A Method for Estimating the Risk of Dam Reservoir Silting in Fire-Prone Watersheds: A Study in Douro River, Portugal. Water. 2020; 12(11):2959. https://doi.org/10.3390/w12112959
Chicago/Turabian StyleTerêncio, Daniela Patrícia Salgado, Rui Manuel Vitor Cortes, Fernando António Leal Pacheco, João Paulo Moura, and Luís Filipe Sanches Fernandes. 2020. "A Method for Estimating the Risk of Dam Reservoir Silting in Fire-Prone Watersheds: A Study in Douro River, Portugal" Water 12, no. 11: 2959. https://doi.org/10.3390/w12112959
APA StyleTerêncio, D. P. S., Cortes, R. M. V., Pacheco, F. A. L., Moura, J. P., & Fernandes, L. F. S. (2020). A Method for Estimating the Risk of Dam Reservoir Silting in Fire-Prone Watersheds: A Study in Douro River, Portugal. Water, 12(11), 2959. https://doi.org/10.3390/w12112959