Application of the Anammox Process for Treatment of Liquid Phase Digestate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Setup
2.2. Operational Conditions
2.3. Characteristics of the Digestate
2.4. Analytical Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, X.; Wang, H.; Li, H.; Jin, Y.; Zhang, W. Carbon sequestration pathway of inorganic carbon in partial nitrification sludge. Bioresour. Technol. 2019, 293, 122101. [Google Scholar] [CrossRef]
- Azari, M.; Walter, U.; Rekers, V.; Gu, J.; Denecke, M. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm. Chemosphere 2017, 174, 117–126. [Google Scholar] [CrossRef]
- Wang, X.; Yang, R.; Zhang, Z.; Wu, J.; Chen, S. Mass balance and bacterial characteristics in an in-situ full-scale swine wastewater treatment system occurring anammox process. Bioresour. Technol. 2019, 292, 122005. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Yang, F.; Xue, Y.; Wang, T. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour. Technol. 2009, 100, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, S.; Peng, Y.; Wu, C.; Du, R.; Gong, L.; Ma, B. Achieving partial denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge. Bioresour. Technol. 2013, 149, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Peng, Y.; Cao, S.; Wang, S.; Wu, C. Advanced nitrogen removal from wastewater by combining anammox with partial denitrification. Bioresour. Technol. 2015, 179, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Kuenen, J.G. Anammox bacteria: From discovery to application. Nat. Rev. Microbiol. 2008, 6, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Pijuan, M.; Ribera-Guardia, A.; Balcázar, J.L.; Micó, M.M.; de la Torre, T. Effect of COD on mainstream anammox: Evaluation of process performance, granule morphology and nitrous oxide production. Sci. Total Environ. 2020, 712, 136372. [Google Scholar] [CrossRef]
- Qin, Y.; Cao, Y.; Ren, J.; Wang, T.; Han, B. Effect of glucose on nitrogen removal and microbial community in anammox-denitrification system. Bioresour. Technol. 2017, 244, 33–39. [Google Scholar] [CrossRef]
- Chen, C.; Sun, F.; Zhang, H.; Wang, J.; Shen, Y.; Liang, X. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresour. Technol. 2016, 216, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, M.; Yu, X.; Mei, J.; Jiang, Y.; Wang, Y.; Zhang, T.C. Effect of C/N ratios on nitrogen removal and microbial communities in the anaerobic baffled reactor (ABR) with an anammox-coupling-denitrification process. Water Sci. Technol. 2018, 78, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Liu, B.; Hou, X.; Liang, Z.; Sun, X.; Du, L.; Wang, D. Effects of different carbon sources and C/N ratios on the simultaneous anammox and denitrification process. Int. Biodeterior. Biodegrad. 2018, 127, 26–34. [Google Scholar] [CrossRef]
- Bi, Z.; Takekawa, M.; Park, G.; Soda, S.; Qiao, S.; Ike, M. Effects of the C/N ratio and bacterial populations on nitrogen removal in the simultaneous anammox and heterotrophic denitrification process: Mathematic modeling and batch experiments. Chem. Eng. J. 2015, 280, 606–613. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Monfet, E.; Aubry, G.; Ramirez, A.A. Nutrient removal and recovery from digestate: A review of the technology. Biofuels 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valorization 2017, 8, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Bolzonella, D.; Fatone, F.; Gottardo, M.; Frison, N. Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full scale applications. J. Environ. Manag. 2018, 216, 111–119. [Google Scholar] [CrossRef]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- European Commission. Council Directive of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources; 91/676/EEC; European Commission: Brussels, Belgium, 1991; pp. 3–7. [Google Scholar]
- Al Seadi, T.; Drosg, B.; Fuchs, W.; Rutz, D.; Janssen, R. Biogas digestate quality and utilization. In The Biogas Handbook: Science, Production and Applications; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008; pp. 267–301. ISBN 978-87-992962-0-0. [Google Scholar]
- Majtacz, J.; Dominika, G.; Kowal, P.; Czerwionka, K. Possibilities of leachate co-treatment originating from biogas production in the deammonification process. J. Ecol. Eng. 2020, 21, 14–19. [Google Scholar] [CrossRef]
- Dapena-Mora, A.; Arrojo, B.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R. Improvement of the settling properties of Anammox sludge in an SBR. J. Chem. Technol. Biotechnol. 2004, 79, 1417–1420. [Google Scholar] [CrossRef]
- Tuszynska, A.; Wilinska, A.; Czerwionka, K. Phosphorus and nitrogen forms in liquid fraction of digestates from agricultural biogas plants. Environ. Technol. 2020, 1–13. [Google Scholar] [CrossRef]
- Greenberg, A.E.; Clesceri, L.S.; Eaton, A.D. APHA Standard Methods for the Examination of Water and Waste Water, 21st ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Washington, DC, USA; Water Pollution Control Federation: Washington, DC, USA, 2005. [Google Scholar]
- Miao, Y.; Peng, Y.; Zhang, L.; Li, B.; Li, X.; Wu, L.; Wang, S. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: Effect of influent C/N ratios. Chem. Eng. J. 2018, 334, 664–672. [Google Scholar] [CrossRef]
- Molinuevo, B.; García, M.C.; Karakashev, D.; Angelidaki, I. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance. Bioresour. Technol. 2009, 100, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Jenni, S.; Vlaeminck, S.E.; Morgenroth, E.; Udert, K.M. Successful application of nitritation/anammox towastewater with elevated organic carbon to ammonia ratios. Water Res. 2014, 49, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.C.; Yang, G.F.; Yu, J.J.; Zheng, P. The inhibition of the Anammox process: A review. Chem. Eng. J. 2012, 197, 67–79. [Google Scholar] [CrossRef]
- Chamchoi, N.; Nitisoravut, S.; Schmidt, J.E. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour. Technol. 2008, 99, 3331–3336. [Google Scholar] [CrossRef]
- Zekker, I.; Raudkivi, M.; Artemchuk, O.; Rikmann, E.; Priks, H.; Jaagura, M.; Tenno, T. Mainstream-sidestream wastewater switching promotes anammox nitrogen removal rate in organic-rich, low-temperature streams. Environ. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Kartal, B.; Van Niftrik, L.; Rattray, J.; Van De Vossenberg, J.L.C.M.; Schmid, M.C.; Sinninghe Damsté, J.; Jetten, M.S.M.; Strous, M. Candidatus ‘Brocadia fulgida’: An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol. Ecol. 2008, 63, 46–55. [Google Scholar] [CrossRef]
- Suto, R.; Ishimoto, C.; Chikyu, M.; Aihara, Y.; Matsumoto, T.; Uenishi, H.; Yasuda, T.; Fukumoto, Y.; Waki, M. Anammox biofilm in activated sludge swine wastewater treatment plants. Chemosphere 2017, 167, 300–307. [Google Scholar] [CrossRef]
- Daverey, A.; Hung, N.T.; Dutta, K.; Lin, J.G. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresour. Technol. 2013, 141, 191–198. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Chen, S.; Wang, S.; Bao, X. Simultaneous nitrogen and carbon removal from swine digester liquor by the Canon process and denitrification. Bioresour. Technol. 2012, 114, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Zekker, I.; Rikmann, E.; Kroon, K.; Mandel, A.; Mihkelson, J.; Tenno, T.; Tenno, T. Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial intermediate nitric oxide. Int. J. Environ. Sci. Technol. 2017, 14, 2343–2356. [Google Scholar] [CrossRef]
- Lotti, T.; Kleerebezem, R.; Hu, Z.; Kartal, B.; De Kreuk, M.K.; Van Erp Taalman Kip, C.; Kruit, J.; Hendrickx, T.L.G.; van Loosdrecht, M.C.M. Pilot-scale evaluation of anammox-based mainstream nitrogen removal from municipal wastewater. Environ. Technol. 2015, 36, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Jalilzadeh, A.; Nabizadeh, R.; Mesdaghinia, A.; Azimi, A.; Nasseri, S.; Mahvi, A.H.; Naddafi, K. Optimization and modelling of chemical oxygen demand removal by ANAMMOX process using response surface methodology. J. Chem. 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
Day | SBR in Deammonification Mode | Batch Reactors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Description of Activities in Batch Reactors | R1 (with COD from LPD) | R2 (with COD from C2H3NaO2) | R3 (without COD) | |||||||||||
Description of Activities | NH4-N Initial Concentration | COD Initial Concentration from C2H3NaO2 | Percentage of LPDin the Reactor | Volume of LPDin the Reactor | NH4-N Initial Concentration | NO2-N Initial Concentration | COD Initial Concentration | NH4-N Initial Concentration | NO2-N Initial Concentration | COD Initial Concentration | NH4-N Initial Concentration | NO2-N Concentration | ||
- | - | % | dm3 | |||||||||||
0–90 | Adaptation for the deammonification process | 40 | 0 | No research | ||||||||||
91 | No research | Test 1 | 0.5 | 0.15 | 10 | 13 | 22 | 10 | 13 | 22 | 10 | 13 | ||
92–106 | Adaptation for the deammonification process | 30 | 30 | No research | ||||||||||
107 | No research | Test 2 | 1 | 0.03 | 20 | 26 | 45 | 20 | 26 | 45 | 20 | 26 | ||
108–122 | Adaptation for the deammonification process | 45 | 45 | No research | ||||||||||
123 | No research | Test 3 | 2 | 0.06 | 40 | 52 | 90 | 40 | 52 | 90 | 40 | 52 | ||
124–136 | Adaptation for the deammonification process | 90 | 90 | No research | ||||||||||
137 | No research | Test 4 | 3 | 0.09 | 60 | 78 | 138 | 60 | 78 | 138 | 60 | 78 | ||
138–152 | Adaptation for the deammonification process | 138 | 138 | No research | ||||||||||
153 | No research | Test 5 | 4 | 0.12 | 80 | 104 | 180 | 80 | 104 | 180 | 80 | 104 | ||
154–168 | Adaptation for the deammonification process | 180 | 180 | No research | ||||||||||
169 | No research | Test 6 | 5 | 0.6 | 100 | 130 | 225 | 100 | 130 | 225 | 100 | 130 | ||
169–183 | Adaptation for the deammonification process | 225 | 225 | No research | ||||||||||
184 | No research | Test 7 | 7.5 | 0.225 | 145 | 190 | 337.5 | 150 | 195 | 337.5 | 150 | 195 |
Compound | Unit | Concentration in the Digestate | Concentration in the LPD (SD) |
---|---|---|---|
TN | mg N/dm3 | 3121 | 2627.7 (255.2) |
TNf | mg N/dm3 | n.a. | 1788.2 (113.8) |
COD | mg O2/dm3 | 36400 | 7650 (739.9) |
CODf | mg O2/dm3 | n.a. | 2590 (197.5) |
NH4-N | mg N/dm3 | n.a. | 1546.7 (36.9) |
TP | mg P/dm3 | 1075 | n.a. |
Norg | mg N/dm3 | n.a. | 1081 (223.3) |
Norgf | mg N/dm3 | n.a. | 241.5 (80.5) |
TSS | % | 4.13 | n.a. |
VSS | % | 53.27 | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majtacz, J.; Grubba, D.; Czerwionka, K. Application of the Anammox Process for Treatment of Liquid Phase Digestate. Water 2020, 12, 2965. https://doi.org/10.3390/w12112965
Majtacz J, Grubba D, Czerwionka K. Application of the Anammox Process for Treatment of Liquid Phase Digestate. Water. 2020; 12(11):2965. https://doi.org/10.3390/w12112965
Chicago/Turabian StyleMajtacz, Joanna, Dominika Grubba, and Krzysztof Czerwionka. 2020. "Application of the Anammox Process for Treatment of Liquid Phase Digestate" Water 12, no. 11: 2965. https://doi.org/10.3390/w12112965
APA StyleMajtacz, J., Grubba, D., & Czerwionka, K. (2020). Application of the Anammox Process for Treatment of Liquid Phase Digestate. Water, 12(11), 2965. https://doi.org/10.3390/w12112965