Degradation of Ketamine and Methamphetamine by the UV/H2O2 System: Kinetics, Mechanisms and Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Section
2.3. Analytical Methods
3. Results and Discussion
3.1. Degradation Kinetics of KET and METH
3.2. Determination of Bimolecular Reaction Rate
3.3. Effect of H2O2 Dosage
3.4. Effect of Initial pH
3.5. Effect of Water Background Components on Degradation Efficiency of Target Compounds
3.5.1. Effect of HCO3−
3.5.2. Effect of Cl−
3.5.3. Effect of NO3−
3.5.4. Effect of HA
3.6. Degradation Products and Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baker, D.R.; Kasprzyk-Hordern, B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Sci. Total Environ. 2013, 454–455, 442–456. [Google Scholar] [CrossRef]
- Bijlsma, L.; Serrano, R.; Ferrer, C.; Tormos, I.; Hernández, F. Occurrence and behavior of illicit drugs and metabolites in sewage water from the Spanish Mediterranean coast (Valencia region). Sci. Total Environ. 2014, 487, 703–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xu, Z.; Li, X. Biodegradation of methamphetamine and ketamine in aquatic ecosystem and associated shift in bacterial community. J. Hazard. Mater. 2018, 359, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Li, K.; Li, J.; Xu, Z.; Fu, X.; Yang, J.; Zhang, H.; Li, X. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res. 2015, 84, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.E.S.; Grabicová, K.; Steinbach, C.; Schmidt-Posthaus, H.; Randák, T. Environmental concentration of methamphetamine induces pathological changes in brown trout (Salmo trutta fario). Chemosphere 2020, 254, 126882. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.H.; Hwang, C.C.; Chen, T.H.; Chen, P.J. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish. Aquat. Toxicol. 2015, 165, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R.; Hasan, M.M. A ligand based innovative composite material for selective lead(II) capturing from wastewater. J. Mol. Liq. 2019, 294, 111679. [Google Scholar] [CrossRef]
- Awual Rabiul, M. A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 2015, 266, 368–375. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Russo, D.; Spasiano, D.; Vaccaro, M.; Cochran, K.H.; Richardson, S.D.; Andreozzi, R.; Puma, G.L.; Reis, N.M.; Marotta, R. Investigation on the removal of the major cocaine metabolite (benzoylecgonine) in water matrices by UV254/H2O2 process by using a flow microcapillary film array photoreactor as an efficient experimental tool. Water Res. 2015, 89, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.; Lin, C.; Hong, P.A.K. Photocatalytic degradation of methamphetamine by UV/TiO2—Kinetics, intermediates, and products. Water Res. 2015, 74, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Yi, K.; Sun, G.; Wang, J. Synthesis of novel sonocatalyst Er3+:YAlO3/Nb2O5 and its application for sonocatalytic degradation of methamphetamine hydrochloride. Ultrason. Sonochem. 2018, 42, 57–67. [Google Scholar] [CrossRef]
- Gu, D.; Guo, C.; Hou, S.; Lv, J.; Zhang, Y.; Feng, Q.; Zhang, Y.; Xu, J. Kinetic and mechanistic investigation on the decomposition of ketamine by UV-254 nm activated persulfate. Chem. Eng. J. 2019, 370, 19–26. [Google Scholar] [CrossRef]
- He, X.; Pelaez, M.; Westrick, J.A.; O’Shea, K.E.; Hiskia, A.; Triantis, T.; Kaloudis, T.; Stefan, M.I.; Armah, A.; Dionysiou, D.D. Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Res. 2012, 46, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Lin, H.Y.; Hsu, L.J. Degradation of ofloxacin using UV/H2O2 process in a large photoreactor. Sep. Purif. Technol. 2016, 168, 57–61. [Google Scholar] [CrossRef]
- Cheng, B.; Le, Y.; Yu, J. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. J. Hazard. Mater. 2010, 177, 971–977. [Google Scholar] [CrossRef]
- Yu, X.; Liu, S.; Yu, J. Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties. Appl. Catal. B Environ. 2011, 104, 12–20. [Google Scholar] [CrossRef]
- Ismail, L.; Ferronato, C.; Fine, L.; Jaber, F.; Chovelon, J.M. Elimination of sulfaclozine from water with SO4− radicals: Evaluation of different persulfate activation methods. Appl. Catal. B Environ. 2016, 201, 573–581. [Google Scholar] [CrossRef]
- Znad, H.; Abbas, K.; Hena, S.; Awual, M.R. Synthesis a novel multilamellar mesoporous TiO 2 /ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J. Environ. Chem. Eng. 2018, 6, 218–227. [Google Scholar] [CrossRef]
- Lutterbeck, C.A.; Wilde, M.L.; Baginska, E.; Leder, C.; Machado, Ê.L.; Kümmerer, K. Degradation of cyclophosphamide and 5-fluorouracil by UV and simulated sunlight treatments: Assessment of the enhancement of the biodegradability and toxicity. Environ. Pollut. 2016, 208 Pt B, 467–476. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, S.; Yoon, Y.; Jung, Y.; Hwang, T.M.; Lee, J.; Kang, J.W. Comparative evaluation of ibuprofen removal by UV/H2O2 and UV/S2O82− processes for wastewater treatment. Chem. Eng. J. 2015, 269, 379–390. [Google Scholar] [CrossRef]
- Zuorro, A.; Fidaleo, M.; Fidaleo, M.; Lavecchia, R. Degradation and antibiotic activity reduction of chloramphenicol in aqueous solution by UV/H2O2 process. J. Environ. Manag. 2014, 133, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Zheng, M.; Sun, J.; Tian, Y.; Fang, M.; Zheng, Y.; Zhang, T.; Zheng, C. Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. Sci. Total Environ. 2019, 651, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Polo, M.; Daiem, M.M.A.; Ocampo-Pérez, R.; Rivera-Utrilla, J.; Mota, A.J. Comparative study of the photodegradation of bisphenol A by HO·, SO4·− and CO3·−/HCO3· radicals in aqueous phase. Sci. Total Environ. 2013, 463–464, 423–431. [Google Scholar]
- Zhang, Y.; Xiao, Y.; Zhong, Y.; Lim, T. Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity. Chem. Eng. J. 2019, 372, 420–428. [Google Scholar] [CrossRef]
- Yin, K.; Deng, L.; Luo, J.; Crittenden, J.; Liu, C.; Wei, Y.; Wang, L. Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential. Chem. Eng. J. 2018, 351, 867–877. [Google Scholar] [CrossRef]
- Moon, B.R.; Kim, T.K.; Kim, M.K.; Choi, J.; Zoh, K.D. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways. Chemosphere 2017, 185, 1039. [Google Scholar] [CrossRef]
- Oh, B.T.; Seo, Y.S.; Sudhakar, D.; Choe, J.H.; Lee, S.M.; Park, Y.J.; Cho, M. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2). J. Hazard. Mater. 2014, 279, 105–110. [Google Scholar]
- Lutze, H.V.; Bircher, S.; Rapp, I.; Kerlin, N.; Bakkour, R.; Geisler, M.; von Sonntag, C.; Schmidt, T.C. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environ. Sci. Technol. 2015, 49, 1673–1680. [Google Scholar] [CrossRef]
Compound | Chemical Formula | Structure | CAS Number | pKa | Log Kow |
---|---|---|---|---|---|
Ketamine | C13H16ClNO | 6740-88-1 | 7.5 | 2.18 | |
Methamphetamine | C10H15N | 4846-07-5 | 9.9 | 2.07 |
Compound | Parent Ion (m/z) | Retention Time (min) | Production (m/z) | Cone Voltage (V) | Collision Voltage (V) |
---|---|---|---|---|---|
Ketamine | 238 | 1.31 | 125 | 16 | 24 |
179 | 16 | 16 | |||
Methamphetamine | 150 | 1.11 | 91 | 22 | 16 |
119 | 22 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, D.-M.; Guo, C.-S.; Feng, Q.-Y.; Zhang, H.; Xu, J. Degradation of Ketamine and Methamphetamine by the UV/H2O2 System: Kinetics, Mechanisms and Comparison. Water 2020, 12, 2999. https://doi.org/10.3390/w12112999
Gu D-M, Guo C-S, Feng Q-Y, Zhang H, Xu J. Degradation of Ketamine and Methamphetamine by the UV/H2O2 System: Kinetics, Mechanisms and Comparison. Water. 2020; 12(11):2999. https://doi.org/10.3390/w12112999
Chicago/Turabian StyleGu, De-Ming, Chang-Sheng Guo, Qi-Yan Feng, Heng Zhang, and Jian Xu. 2020. "Degradation of Ketamine and Methamphetamine by the UV/H2O2 System: Kinetics, Mechanisms and Comparison" Water 12, no. 11: 2999. https://doi.org/10.3390/w12112999
APA StyleGu, D. -M., Guo, C. -S., Feng, Q. -Y., Zhang, H., & Xu, J. (2020). Degradation of Ketamine and Methamphetamine by the UV/H2O2 System: Kinetics, Mechanisms and Comparison. Water, 12(11), 2999. https://doi.org/10.3390/w12112999