Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area
2.2. Sampling and Preliminary Treatment of Samples
2.3. DNA Extraction and 16S rRNA Gene Amplification
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Characterization
3.2. Phylogenetic Composition of the Bacterial Community
3.3. Bacterial Taxa
3.3.1. Water Samples
3.3.2. Sediment Samples
3.4. Bacterial Genera
3.4.1. Water Samples
3.4.2. Sediment Samples
3.5. Influence of Environmental Parameters on Bacterial Community Distribution
3.5.1. Influence of Environmental Parameters on Water Bacterial Community Distribution
3.5.2. Influence of Environmental Parameters on Sediment Bacterial Community Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mueller, D.R.; Vincent, W.F.; Jeffries, M.O. Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett. 2003, 30, 2031. [Google Scholar] [CrossRef] [Green Version]
- Hauptmann, A.L.; Markussen, T.N.; Stibal, M.; Olsen, N.S.; Elberling, B.; Bælum, J.; Sicheritz-Pontén, T.; Jacobsen, C.S. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front. Microbiol. 2016, 7, 1474. [Google Scholar] [CrossRef] [PubMed]
- Caputo, S.; Papale, M.; Rizzo, C.; Giannarelli, S.; Conte, A.; Moscheo, F.; Graziano, M.; Aspholm, P.E.; Onor, M.; De Domenico, E.; et al. Heavy metal resistance in bacteria from contaminated Arctic sediment is driven by heavy metal local inputs. Arch. Environ. Contam. Toxicol. 2019, 77, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Rappazzo, A.C.; Papale, M.; Rizzo, C.; Conte, A.; Giannarelli, S.; Onor, M.; Abete, C.; Cefali, P.; De Domenico, E.; Michaud, L.; et al. Heavy metal tolerance and polychlorinated biphenyl oxidation in bacterial communities inhabiting the Pasvik River and the Varanger Fjord area (Arctic Norway). Mar. Pollut. Bull. 2019, 141, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, C.S.; Eiler, A.; Herfort, L.; Needoba, J.A.; Peterson, T.D.; Crump, B.C. Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME J. 2013, 7, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.A.; Stibal, M.; Olsen, N.S.; Mikkelsen, A.B.; Elberling, B.; Jacobsen, C.S. Potential activity of subglacial microbiota transported to anoxic river delta sediments. Microb. Ecol. 2017, 74, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Dubnick, A.; Kazemi, S.; Sharp, M.; Wadham, J.; Hawkings, J.; Beaton, A.; Lanoil, B. Hydrological controls on glacially exported microbial assemblages. J. Geophys. Res. Biogeosci. 2017, 122, 1049–1061. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, T.; del Giorgio, P.A. Compositional changes in freeliving bacterial communities along a salinity gradient in two temperate estuaries. Limnol. Oceanogr. 2002, 47, 453–470. [Google Scholar] [CrossRef]
- Tamames, J.; Abellàn, J.; Pignatelli, M.; Camacho, A.; Moya, A. Environmental distribution of prokaryotic taxa. BMC Microbiol. 2010, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Cavaco, M.A.; St. Louis, V.L.; Engel, K.; St. Pierre, K.A.; Schiff, S.L.; Stibal, M.; Neufeld, J.D. Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiol. Ecol. 2019, 95, 11. [Google Scholar] [CrossRef]
- Crump, B.C.; Hobbie, J.E. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol. Oceanogr. 2005, 50, 1718–1729. [Google Scholar] [CrossRef]
- Ruiz-González, C.; Niño-García, J.P.; Del Giorgio, P.A. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 2015, 18, 1198–1206. [Google Scholar] [CrossRef]
- Niño-García, J.P.; Ruiz-González, C.; del Giorgio, P.A. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J. 2016, 10, 1755–1766. [Google Scholar] [CrossRef] [Green Version]
- Laganà, P.; Votano, L.; Caruso, G.; Azzaro, M.; Lo Giudice, A.; Delia, S. Bacterial isolates from the Arctic region (Pasvik River, Norway): Assessment of biofilm production and antibiotic susceptibility profiles. Environ. Sci. Pollut. Res. 2018, 25, 1089–1102. [Google Scholar] [CrossRef]
- Rastogi, G.; Sani, R. Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In Microbes and Microbial Technology; Ahmad, I., Ahmad, F., Pichtel, J., Eds.; Springer: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Amundsen, P.-A.; Staldvik, F.J.; Lukin, A.A.; Kashulin, N.A.; Popova, O.A.; Reshetnikov, Y.S. Heavy metal concentration in freshwater fish from the border region between Norway and Russia. Sci. Total Environ. 1997, 20, 211–224. [Google Scholar] [CrossRef]
- Karimmousavi, S.; Primicerio, R.; Amundsen, P. Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. Sci. Total Environ. 2003, 307, 93–110. [Google Scholar] [CrossRef]
- Fouhy, F.; Clooney, A.G.; Stanton, C.; Claesson, M.J.; Cotter, P.D. 16S rRNA gene sequencing of mock microbial populations—Impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 2016, 16, 123. [Google Scholar] [CrossRef]
- Conte, A.; Papale, M.; Amalfitano, S.; Mikkonen, A.; Rizzo, C.; De Domenico, E.; Michaud, L.; Lo Giudice, A. Bacterial community structure along the subtidal sandy sediment belt of a high Arctic fjord (Kongsfjorden, Svalbard Islands). Sci. Total Environ. 2018, 619, 203–211. [Google Scholar] [CrossRef]
- Schloss, P.D.; Gevers, D.; Westcott, S.L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 2011, 6, e27310. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Koenig, J.E.; Spor, A.; Scalfone, N.; Fricker, A.D.; Stombaugh, J.; Knight, R.; Angenet, L.T.; Ley, R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 2011, 108, 4578–4585. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.W.; Moran, M.A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 2014, 78, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Kirchman, D.L.; Dittel, A.I.; Findlay, S.E.G.; Fischer, D. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat. Microb. Ecol. 2004, 35, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Garneau, M.E.; Vincent, W.F.; Alonso-Sáez, L.; Gratton, Y.; Lovejoy, C. Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem. Aquat. Microb. Ecol. 2006, 42, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Haro-Moreno, J.M.; Rodriguez-Valera, F.; Rosselli, R.; Martinez-Hernandez, F.; Roda-Garcia, J.J.; Gomez, M.L.; Fornas, O.; Martinez-Garcia, M.; López-Pérez, M. Ecogenomics of the SAR11 clade. Environ. Microbiol. 2020, 22, 1748–1763. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.M.; Rappé, M.S.; Connon, S.A.; Vergin, K.L.; Siebold, W.A.; Carlson, C.A.; Giovannoni, S.J. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 2002, 420, 806–810. [Google Scholar] [CrossRef]
- Giovannoni, S.J. SAR11 bacteria: The most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 2017, 9, 231–255. [Google Scholar] [CrossRef]
- Salcher, M.M.; Pernthaler, J.; Posch, T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). ISME J. 2011, 5, 1242–1252. [Google Scholar] [CrossRef] [Green Version]
- Logares, R.; Bråte, J.; Bertilsson, S.; Clasen, J.L.; Shalchian-Tabrizi, K.; Rengefors, K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009, 17, 414–422. [Google Scholar] [CrossRef]
- Henson, M.W.; Lanclos, V.C.; Faircloth, B.C.; Thrash, J.C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018, 12, 1846–1860. [Google Scholar] [CrossRef] [Green Version]
- Denef, V.J.; Mueller, R.S.; Chiang, E.; Liebig, J.R.; Vanderploeg, H.A. Chloroflexi CL500-11 populations that predominate deep-lake hypolimnion bacterioplankton rely on nitrogen-rich dissolved organic matter metabolism and C1 compound oxidation. Appl. Environ. Microbiol. 2016, 82, 1423–1432. [Google Scholar] [CrossRef] [Green Version]
- Palacin-Lizarbe, C.; Camarero, L.; Catalan, J. Denitrification temperature dependence in remote, cold, and N-poor lake sediments. Water Resour. Res. 2018, 54, 1161–1173. [Google Scholar] [CrossRef]
- Foesel, B.U.; Rohde, M.; Overmann, J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil—The first described species of Acidobacteria subdivision 4. Syst. Appl. Microbiol. 2013, 36, 82–89. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef] [Green Version]
- Vincent, W.F.; Quesada, A. Cyanobacteria in high latitude lakes, rivers and seas. In Ecology of Cyanobacteria II; Whitton, B., Ed.; Springer: Dordrecht, Germany, 2012; pp. 371–385. [Google Scholar]
- Mikhailyuk, T.; Vinogradova, O.; Holzinger, A.; Glaser, K.; Samolov, E.; Karsten, U. New record of the rare genus Crinalium Crow (Oscillatoriales, Cyanobacteria) from sand dunes of the Baltic Sea, Germany: Epitypification and emendation of Crinalium magnum Fritsch et John based on an integrative approach. Phytotaxa 2019, 400, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Kolda, A.; Petrić, I.; Mucko, M.; Gottstein, S.; Žutinić, P.; Goreta, G.; Ternjej, I.; Rubinić, J.; Radišić, M.; Udovič, M.G. How environment selects: Resilience and survival of microbial mat community within intermittent karst spring Krčić (Croatia). Ecohydrology 2019, 12, e2063. [Google Scholar] [CrossRef]
- Rott, E.; Schneider, S.C. A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe. Sci. Total Environ. 2014, 475, 180–186. [Google Scholar] [CrossRef]
- Jung, Y.J.; Lee, Y.M.; Baek, K.; Hwang, C.Y.; Cho, Y.; Hong, S.G.; Kim, J.H.; Lee, H.K. Algibacter psychrophilus sp. nov., a psychrophilic bacterium isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2015, 65, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Baek, S.K.; Lee, S.T. Ferruginibacter alkalilentus gen. nov., sp. nov. and Ferruginibacter lapsinanis sp. nov., novel members of the family Chitinophagaceae in the phylum Bacteroidetes, isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 2009, 59, 2394–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Sun, X.; Han, F.; Li, B.; Xiao, E.; Xiao, T.; Yang, Z.; Sun, W. Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river. Sci. Total Environ. 2020, 713, 136451. [Google Scholar] [CrossRef] [PubMed]
- Ngugi, D.K.; Stingl, U. High-quality draft single-cell genome sequence of the NS5 Marine Group from the coastal Red Sea. Genome Announc. 2018, 6, e00565-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Vives, C.; Nielsen, S.; Sánchez, P.; Palenzuela, O.; Ferrera, I.; Sebastián, M.; Pedrós-Alió, C.; Gasol, J.M.; Acinas, S.G. Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Mol. Ecol. 2019, 28, 2846–2859. [Google Scholar] [CrossRef]
- Balmonte, J.P.; Arnosti, C.; Underwood, S.; McKee, B.A.; Teske, A. Riverine bacterial communities reveal environmental disturbance signatures within the Betaproteobacteria and Verrucomicrobia. Front. Microbiol. 2016, 7, 1441. [Google Scholar] [CrossRef]
- Hahn, M.W.; Kasalicky, V.; Jezbera, J.; Brandt, U.; Jezberova, J.; Simek, K. Limnohabitans curvus gen. nov., sp nov., a planktonic bacterium isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 2010, 60, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Jezberová, J.; Jezbera, J.; Brandt, U.; Lindström, E.S.; Langenheder, S.; Hahn, M.W. Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ. Microbiol. 2010, 12, 658–669. [Google Scholar]
- Simu, K.; Hagström, Å. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol. 2004, 70, 2445–2451. [Google Scholar] [CrossRef] [Green Version]
- Gołębiewski, M.; Całkiewicz, J.; Creer, S.; Piwosz, K. Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: The case study of the Vistula river estuary. Environ. Microbiol. Rep. 2017, 9, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Krishnan, K.P. Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J. Basic Microbiol. 2017, 1–12. [Google Scholar] [CrossRef]
- Zhong, Y.L.; Sun, X.K.; Hui, J.G.; Teng, H.L.; Du, Z.J. Marinicella rhabdoformis sp. nov., isolated from coastal sediment. Int. J. Syst. Evol. Microbiol. 2020, 70, 3528–3533. [Google Scholar] [CrossRef]
- Parrilli, E.; Tedesco, P.; Fondi, M.; Tutino, M.L.; Lo Giudice, A.; de Pascale, D.; Fani, R. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys. Life Rev. 2019. [Google Scholar] [CrossRef]
- Peng, M.; Xiaoxue, Z.; Qiuyu, W. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes. Int. J. Environ. Res. Public Health 2015, 12, 12002–12015. [Google Scholar] [CrossRef] [Green Version]
- Zwart, G.; Crump, B.C.; Kamst-van Agterveld, M.P.; Hagen, F.; Han, S.-H. Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 2002, 28, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; He, R.; Song, A.; Huang, Y.; Jin, Z.; Liang, Y.; Li, Q.; Wang, X.; Müller, W.E.G.; Cao, J. Spatial and temporal dynamics of bacterioplankton community composition in a subtropical dammed karst river of southwestern China. Microbiol. Open 2019, 8, e849. [Google Scholar] [CrossRef] [Green Version]
Matrix | Location | Station | Coordinates | Temperature | Water Parameters | |||||
---|---|---|---|---|---|---|---|---|---|---|
(°C) | O2 | pH | Cond | Sal | ||||||
Water | Sediment | (ppm) | (mS) | (psu) | ||||||
Water | Outer | 1w | 69°51′72.9″ N | 30°06′92.3″ E | 7 | 6.8 | 3.24 | 8.4 | 12.9 | 35 |
Middle | 2w | 69°48′09.1″ N | 30°05′25″ E | 8.1 | 7.9 | 9.68 | 8.17 | 10.82 | 24 | |
9w | 69°47′73.6″ N | 30°10′29.6″ E | 9.2 | 8.9 | 9.70 | 8.45 | 23.05 | 23 | ||
4w | 69°46′60.9″ N | 29°57′05.7″ E | 7.8 | 7.5 | 8.26 | 8.4 | 12.01 | 30 | ||
Inner | 3w | 69°44′81.3″ N | 30°04′74.1″ E | 8.2 | 7.9 | 9.83 | 8.38 | 10.0 | 14 | |
6w | 69°44′70.7″ N | 29°45′03.8″ E | 7.8 | 7.4 | 9.66 | 8.42 | 20.8 | 16 | ||
7w | 69°42.489′ N | 29°37′78.8″ E | 8.8 | 8.2 | 9.38 | 8.25 | 17.55 | 15 | ||
5w | 69°42′12.3″ N | 29°55′81.1″ E | 7.9 | 7.3 | 8.70 | 8.4 | 9.70 | 20 | ||
8w | 69°40′84.6″ N | 30°06′87″ E | 9.2 | 9.1 | 11.3 | 8.53 | 25.29 | 4 | ||
Sediment | Outer | 1s | 69°51′72.9″ N | 30°06′92.3″ E | 7 | 6.8 | 3.24 | 8.4 | 12.9 | 35 |
17s | 69°50′14.7″ N | 30°4′26.4″ E | 11.4 | 11 | 2.84 | 8.38 | 42.4 | 31 | ||
Middle | 18s | 69°46′55.8″ N | 30°7′40.3″ E | 11.8 | 11.6 | 1.93 | 8.41 | 38.2 | 29 | |
9s | 69°47′73.6″ N | 30°10′29.6″ E | 9.2 | 8.9 | 9.70 | 8.45 | 23.05 | 23 | ||
19s | 69°45′36.7″ N | 30°3′38.6″ E | 13.6 | 13.6 | 2.71 | 8.4 | 31.5 | 20 | ||
Inner | 13s | 69°43′11″ N | 30°4′25.3″ E | 13.2 | 13.4 | 2.04 | 8.31 | 14.14 | 16 | |
5s | 69°42′12.3″ N | 29°55′81.1″ E | 7.9 | 7.3 | 8.70 | 8.4 | 9.70 | 20 | ||
8s | 69°40′84.6″ N | 30°06′87″ E | 9.2 | 9.1 | 11.3 | 8.53 | 25.29 | 4 | ||
15s | 69°32′15.5″ N | 30°6′22″ E | 16.7 | 16.5 | 2.00 | 6.94 | 0.0374 | 0 | ||
16s | 69°26′43.3″ N | 30°2′59.1″ E | 15.6 | 15.7 | 2.81 | 6.95 | 0.0321 | 0 |
Matrix | Station | Good Quality Reads (n°) | OTUs (n°) | Shannon (H’ Index) | |
---|---|---|---|---|---|
Water | Outer | 1w | 1041 | 63 | 2.24 |
Middle | 2w | 3020 | 73 | 2.70 | |
9w | 1350 | 90 | 3.05 | ||
4w | 2135 | 40 | 1.70 | ||
Inner | 3w | 2843 | 112 | 4.31 | |
6w | 752 | 67 | 2.51 | ||
7w | 1907 | 85 | 3.08 | ||
5w | 2015 | 81 | 2.81 | ||
8w | 2251 | 128 | 4.70 | ||
Sediment | Outer | 1s | 1819 | 203 | 5.68 |
17s | 2285 | 186 | 5.38 | ||
Middle | 18s | 2427 | 170 | 4.94 | |
9s | 1032 | 268 | 6.28 | ||
19s | 1041 | 178 | 5.14 | ||
Inner | 13s | 1703 | 206 | 5.40 | |
5s | 2080 | 218 | 6.08 | ||
8s | 2084 | 180 | 5.43 | ||
15s | 2773 | 288 | 6.78 | ||
16s | 1599 | 280 | 6.64 |
Water Samples | Outer | Middle | Inner | ||||||||
Phylum or Class | Genus | 1w | 2w | 9w | 4w | 3w | 6w | 7w | 5w | 8w | |
Alphaproteobacteria | Hirschia | 0.1 | |||||||||
Roseobacter | 0.5 | 3.1 | 8.1 | 0.3 | 2.7 | 3.3 | 13.2 | 7.9 | 0.2 | ||
LD12 freshwater group | 0.3 | 1.0 | 0.1 | 2.8 | 0.2 | 0.1 | 5.8 | ||||
Sphingorhabdus | 0.5 | 0.4 | 0.2 | 0.8 | |||||||
Pelagibacter | 46.3 | 26.6 | 39.6 | 48.3 | 18.1 | 55.3 | 29.3 | 50.7 | 5.9 | ||
Betaproteobacteria | Polynucleobacter | 0.4 | 0.8 | 1.1 | 0.2 | 3.4 | 0.1 | 1.9 | 0.6 | 4.6 | |
BAL58 marine group | 0.9 | 0.7 | 1.2 | 0.2 | 0.5 | 0.7 | 3.9 | 2.5 | |||
Limnohabitans | 0.4 | 0.4 | 3.1 | 0.5 | 0.5 | 5.1 | |||||
Gammaproteobacteria | Pseudoalteromonas | 0.6 | 0.1 | 1.9 | 2.6 | 1.4 | 5.6 | ||||
Balneatrix | 2.3 | 2.1 | 2.7 | 0.7 | 1.1 | 0.7 | 0.5 | 0.4 | 0.1 | ||
Marinicella | 0.1 | 0.1 | |||||||||
Pseudomonas | 0.1 | ||||||||||
Cocleimonas | 0.2 | ||||||||||
Deltaproteobacteria | Desulfosarcina | 0.1 | |||||||||
Desulfobulbus | 0.1 | ||||||||||
Epsilonproteobacteria | Sulfurovum | 0.1 | |||||||||
Bacteroidetes | Cytophaga | 0.1 | 0.1 | 0.1 | |||||||
Pseudarcicella | 0.1 | 0.2 | 0.1 | 1.4 | 0.1 | 0.3 | 5.9 | ||||
Spirosoma | 0.1 | 0.1 | |||||||||
Fluviicola | 0.1 | 0.6 | 0.1 | 0.1 | 0.5 | ||||||
Owenweeksia | 0.8 | 1.2 | 2.5 | 0.1 | 1.0 | 0.5 | 0.4 | 0.4 | |||
Algibacter | 0.8 | 1.0 | 0.2 | 0.2 | 0.8 | 0.1 | 0.7 | 0.6 | 0.5 | ||
Formosa | 0.4 | 0.4 | 0.5 | 0.8 | 0.4 | 0.1 | 0.3 | ||||
NS5 marine group | 2.9 | 3.0 | 6.4 | 2.1 | 2.5 | 5.3 | 10.4 | 6.1 | 0.1 | ||
Polaribacter | 0.9 | 1.6 | 2.3 | 0.3 | 1.3 | 0.9 | 1.1 | 1.1 | 0.3 | ||
Ulvibacter | 1.0 | 1.4 | 0.3 | 0.8 | 0.3 | 0.2 | 1.0 | 0.1 | |||
Ferruginibacter | 0.1 | 0.2 | 0.8 | 0.3 | 0.2 | 0.2 | 2.9 | ||||
Sediminibacterium | 0.1 | 0.5 | 0.4 | 0.1 | 4.7 | 0.1 | 0.6 | 0.4 | 13.7 | ||
Actinobacteria | CL500-29 marine group | 0.1 | 0.1 | 2.1 | 0.1 | 0.2 | 3.3 | ||||
Illumatobacter | 0.1 | 0.2 | 0.2 | 0.2 | |||||||
Sporichthyaceae | 0.1 | 0.1 | 0.8 | 0.5 | 1.0 | ||||||
Planktophila | 0.1 | 0.3 | 1.8 | 0.1 | 0.3 | 0.2 | 3.3 | ||||
Microbacteriaceae | 0.1 | 0.1 | 0.2 | 0.2 | |||||||
Aquiluna | 0.1 | 1.6 | 0.1 | 0.2 | 0.3 | 0.5 | 4.8 | ||||
Planktoluna | 0.1 | 0.1 | 0.1 | ||||||||
Patulibacter | 0.1 | ||||||||||
Thermoleophilia | 0.1 | ||||||||||
Chloroflexi | Roseiflexus | 0.1 | 0.2 | 0.7 | |||||||
Cyanobacteria | Chamaesiphon | 0.2 | |||||||||
Crinalium | 0.2 | ||||||||||
Gemmatimonadetes | Gemmatimonas | 0.1 | 0.3 | 0.1 | |||||||
Sediment samples | Genus | 1s | 17s | 18s | 9s | 19s | 13s | 5s | 8s | 16s | 15s |
Alphaproteobacteria | Hirschia | 0.1 | 0.1 | 0.4 | |||||||
Woodsholea | 0.9 | 0.1 | 0.4 | 0.2 | |||||||
Hyphomicrobi | 0.1 | 0.2 | 0.4 | ||||||||
Pedomicrobiu | 0.3 | 0.2 | |||||||||
Pseudahrensia | 0.7 | 0.6 | 0.7 | 1.2 | 1.2 | 0.7 | |||||
Anderseniella | 0.4 | 0.2 | 0.2 | 0.4 | 2.4 | ||||||
Variibacter | 1.6 | 0.1 | 0.4 | 1.2 | 0.6 | ||||||
Roseobacter | 0.1 | ||||||||||
Sphingorhabdus | 0.2 | 1.0 | 2.3 | 0.3 | |||||||
Sphingomonas | 2.2 | 0.4 | |||||||||
Pelagibacter | 0.1 | ||||||||||
Betaproteobacteria | Polynucleobacter | 0.1 | 0.1 | ||||||||
Limnohabitans | 0.1 | ||||||||||
Gammaproteobacteria | Pseudoalteromonas | 1.2 | 0.3 | 0.1 | |||||||
Marinicella | 2.5 | 1.0 | 4.0 | 4.0 | 3.9 | 1.0 | |||||
Pseudomonas | 0.3 | 0.1 | |||||||||
Cocleimonas | 0.5 | 0.1 | 0.1 | 3.3 | |||||||
Deltaproteobacteria | Desulfosarcina | 1.9 | 1.7 | 0.2 | 0.2 | 1.4 | 1.2 | ||||
Desulfobulbus | 0.7 | 0.6 | 1.5 | 0.5 | 2.1 | 0.6 | 0.1 | 0.8 | |||
Epsilonproteobacteria | Sulfurovum | 7.4 | 15.8 | 31.6 | 0.1 | 13.2 | 7.3 | 9.3 | 0.1 | 0.1 | |
Bacteroidetes | Cytophaga | 0.1 | 0.1 | 0.2 | |||||||
Spirosoma | 2.6 | ||||||||||
Algibacter | 4.3 | 1.7 | 0.9 | 0.1 | 1.4 | 3.8 | 5.0 | 0.1 | |||
Aquimarina | 0.1 | 0.1 | 0.4 | ||||||||
Lutibacter | 0.1 | 0.1 | 0.1 | 0.5 | |||||||
Lutimonas | 3.0 | 2.5 | 0.5 | 0.1 | 0.8 | 5.9 | 1.3 | ||||
Maribacter | 1.5 | 0.3 | 0.5 | 0.3 | 0.2 | 2.0 | |||||
Pseudofulvibacter | 0.1 | 0.1 | 0.8 | ||||||||
Ulvibacter | 0.1 | 0.1 | 0.1 | 0.7 | 0.7 | ||||||
Ferruginibacter | 0.4 | 5.8 | 0.3 | 4.5 | |||||||
Sediminibacterium | 0.2 | 0.3 | 0.1 | ||||||||
Actinobacteria | CL500-29 marine group | 0.1 | 0.1 | 0.8 | 0.2 | 0.6 | 0.5 | 2.0 | |||
Illumatobacter | 2.7 | 2.4 | 0.5 | 0.1 | 2.9 | 3.1 | 3.8 | 1.5 | 0.6 | ||
Microthrix | 0.2 | 0.1 | 0.2 | 0.7 | 0.2 | 0.1 | 0.1 | ||||
Iamia | 0.1 | 0.1 | 0.5 | ||||||||
Mycobacterium | 0.2 | 0.2 | 0.2 | 0.7 | 0.5 | 0.6 | 0.3 | 0.4 | 0.5 | ||
Oryzihumus | 0.1 | 0.5 | |||||||||
Marmoricola | 0.3 | ||||||||||
Nocardioides | 0.9 | ||||||||||
Propionibacterium | 0.1 | 2.1 | |||||||||
Gaiella | 0.3 | 0.1 | 0.5 | 0.2 | |||||||
Patulibacter | 0.4 | 0.2 | 0.2 | 0.1 | 0.3 | 1.9 | 0.2 | 0.3 | 0.3 | 0.1 | |
Acidobacteria | Bryobacter | 0.5 | 0.1 | 0.3 | 0.5 | ||||||
Solibacter | 0.4 | 0.2 | 0.2 | ||||||||
Geothrix | 0.1 | 0.7 | |||||||||
Blastocatella | 0.1 | 0.1 | 0.1 | 9.8 | 0.4 | 1.6 | |||||
Chloroflexi | Roseiflexus | 1.0 | 0.1 | 0.4 | 1.6 | 0.2 | |||||
Gemmatimonadetes | Gemmatimonas | 0.3 | 0.7 | 0.6 | 1.5 | ||||||
Nitrospirae | Nitrospira | 0.4 | 4.5 | 0.1 | 0.1 | 6.0 | 0.1 | ||||
Cyanobacteria | Pleurocapsa | 4.1 | |||||||||
Chamaesiphon | 2.8 | 0.4 | |||||||||
Crinalium | 5.3 | ||||||||||
Anabaena | 0.3 | 0.1 | 0.4 | ||||||||
Nodularia | 0.8 | ||||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papale, M.; Rappazzo, A.C.; Mikkonen, A.; Rizzo, C.; Moscheo, F.; Conte, A.; Michaud, L.; Lo Giudice, A. Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). Water 2020, 12, 3098. https://doi.org/10.3390/w12113098
Papale M, Rappazzo AC, Mikkonen A, Rizzo C, Moscheo F, Conte A, Michaud L, Lo Giudice A. Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). Water. 2020; 12(11):3098. https://doi.org/10.3390/w12113098
Chicago/Turabian StylePapale, Maria, Alessandro Ciro Rappazzo, Anu Mikkonen, Carmen Rizzo, Federica Moscheo, Antonella Conte, Luigi Michaud, and Angelina Lo Giudice. 2020. "Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic)" Water 12, no. 11: 3098. https://doi.org/10.3390/w12113098
APA StylePapale, M., Rappazzo, A. C., Mikkonen, A., Rizzo, C., Moscheo, F., Conte, A., Michaud, L., & Lo Giudice, A. (2020). Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). Water, 12(11), 3098. https://doi.org/10.3390/w12113098