Multivariate Analyses of Water Quality Dynamics Over Four Decades in the Barataria Basin, Mississippi Delta
Abstract
:1. Introduction
- water quality is strongly impacted by agricultural runoff in the upper-basin but not in the lower-basin;
- the Davis Pond Mississippi River diversion project impacted water quality in the mid-basin;
- there were strong changes in spatial and temporal patterns of water quality over the past four decades.
2. Study Area
3. Materials and Methods
Statistical Methods
4. Results
- (a).
- CHL, TON, and TP are positively correlated. SD is negatively correlated with the other four variables. TIN is weakly correlated with CHL, TON, and TP. See Table 1.
- (b).
- The first principal component (PC1) in all three cases mainly reflects the difference between SD and the sum of CHL, TON, and TP. See Table 2.
- (c).
- TIN is the most influential factor in second principal component (PC2) for all three cases. See Table 2.
- (d).
- For the Seaton case, cluster 1 and cluster 2 samples have positive PC1 scores (implying high SD and low CHL, TON, and TP values), while cluster 3 samples have negative PC1 scores (implying low SD and high CHL, TON, and TP values). See Figure 3.
- (e).
- Cluster 2 samples have positive PC2 scores (implying high TIN), while cluster 1 samples have negative PC2 scores (implies low TIN). See Figure 3.
- (f).
- For pre- and post-diversion cases, cluster 4 and 6 in pre-diversion correspond to cluster 4 and 5 in post-diversion. Both clusters have the largest PC1 scores, which implies high SD and low CHL, TON, and TP values.
- (g).
- The PC2 loadings for TIN in pre- and post-diversions have opposite signs. The top cluster in pre-diversion implies low values in TIN, while the top ones in post-diversion implies high TIN values.
5. Discussion
Wetland–Nutrient Interactions in the Upper Barataria Basin
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batker, D.; de la Torre, I.; Costanza, R.; Day, J.; Swedeen, P.; Boumans, R.; Bagstad, K. The threats to the value of ecosystem goods and services of the Mississippi delta. In Perspectives on the Restoration of the Mississippi Delta; Day, J., Kemp, P., Freeman, A., Muth, D., Eds.; Springer: New York, NY, USA, 2014; pp. 155–174. [Google Scholar]
- Roberts, H.H. Dynamic changes of the holocene Mississippi River delta plain: The delta cycle. J. Coast. Res. 1997, 13, 605–627. [Google Scholar]
- Blum, M.D.; Roberts, H.H. The Mississippi delta region: Past, present, and future. Annu. Rev. Earth Planet. Sci. 2012, 40, 655–683. [Google Scholar] [CrossRef]
- Hijma, M.; Shen, Z.; Toörnqvist, T.; Mauz, B. Late Holocene evolution of a coupled, mud-dominated delta plain-chenier plain systems, coastal Louisiana, USA. Earth Surf. Dynam. 2018, 5, 689–710. [Google Scholar] [CrossRef] [Green Version]
- Britsch, L.D.; Dunbar, J.B. Land loss rates: Louisiana coastal plain. J. Coast. Res. 1993, 9, 324–338. [Google Scholar]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land area change in coastal Louisiana 1932 to 2016. U.S. Geol. Surv. Sci. Investig. Map 2017, 3381, 16p. [Google Scholar] [CrossRef] [Green Version]
- Day, J.W.; Britsch, L.D.; Hawes, S.; Shaffer, G.; Reed, D.J.; Cahoon, D. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries 2000, 23, 425–438. [Google Scholar] [CrossRef]
- Day, J.W.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi delta: Lessons from hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Day, J.; Shaffer, G.; Cahoon, D.; DeLaune, R. Canals, backfilling and wetland loss in the Mississippi Delta. Estuar. Coast. Shelf Sci. 2019, 227. [Google Scholar] [CrossRef]
- Day, J.W.; Clark, H.C.; Chang, C.; Hunter, R.; Norman, C.R. Life cycle of oil and gas fields in the Mississippi River Delta: A Review. Water 2020, 12, 1492. [Google Scholar] [CrossRef]
- Southwick, L.M.; Grigg, B.C.; Kornecki, T.S.; Fousse, J.L. Potential influence of sugarcane cultivation on estuarine water quality of Louisiana’s gulf coast. J. Agric. Food Chem. 2002, 50, 4393–4399. [Google Scholar] [CrossRef]
- Yu, K.; DeLaune, R.; Tao, R.; Beine, R. Nonpoint source of nutrients and herbicides associated with sugarcane production and its impact on Louisiana coastal water quality. J. Environ. Qual. 2008, 37, 2275–2283. [Google Scholar] [CrossRef] [Green Version]
- Bricker, S.; Longstaff, B.; Dennison, W.; Jones, A.; Boicourt, K.; Wicks, C.; Woerner, J. Effects of Nutrient Enrichment in the Nation’s Estuaries: A Decade of Change. In NOAA Coastal Ocean Program Decision Analysis Series No. 26; National Centers for Coastal Ocean Science: Silver Spring, MD, USA, 2007; p. 328. [Google Scholar]
- NRC—National Research Council. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Zingone, A.; Phlips, E.J.; Harrison, P.J. Multiscale variability of twenty-two coastal phytoplankton time series: A global scale comparison. Estuaries Coasts 2010, 33, 224–229. [Google Scholar] [CrossRef]
- Seaton, A.; Day, J. The development of a trophic state index for the quantification of eutrophication in the Barataria Basin. In Proceedings of the Third Marsh and Estuary Management Symposium, Louisiana State University, Division of Continuing Education, Baton Rouge, LA, USA, 25–29 March 1979; pp. 113–125. [Google Scholar]
- Hopkinson, C.S.; Day, J.W. Modeling hydrology and eutrophication in a Louisiana swamp forest ecosystem. Environ. Manag. 1980, 4, 325–335. [Google Scholar] [CrossRef]
- Hopkinson, C.S.; Day, J.W. Modeling the relationship between development and storm water and nutrient runoff. Environ. Manag. 1980, 4, 315–324. [Google Scholar] [CrossRef]
- Day, J.; Hopkinson, C.; Conner, W. An analysis of environmental factors regulating community metabolism and fisheries production in a Louisiana estuary. In Estuarine Comparisons; Kennedy, V., Ed.; Academic Press: New York, NY, USA, 1982; pp. 121–136. [Google Scholar]
- Kemp, P.; Day, J. Nutrient dynamics in a swamp receiving agricultural runoff. In Cypress Swamps; Ewel, K., Odum, H.T., Eds.; U. Fla Press: Gainesville, FL, USA, 1984; pp. 286–293. [Google Scholar]
- Day, J.; Kemp, P. Long term impacts of agricultural runoff in a Louisiana swamp forest. In Ecological Considerations in Wetlands Treatment of Municipal Waste Water; Godfrey, P., Ed.; Van Norstrand Reinhold Co.: New York, NY, USA, 1985; pp. 317–326. [Google Scholar]
- Lane, R.R.; Huang, H.; Day, J.W.; Justic, D.; DeLaune, R.D. Water quality of a coastal Louisiana swamp and how dredging is undermining restoration efforts. Estuar. Coast. Shelf Sci. 2015, 152, 23–32. [Google Scholar] [CrossRef]
- Turner, R.; Swenson, E.; Milan, C.; Lee, J. Spatial variations in chlorophyll a, C, N, and P in a Louisiana estuary from 1994 to 2016. Hydrobiologia 2019, 834, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Seaton, A. Nutrient Chemistry in the Barataria Basin—A Multivariant Approach. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 1979; 123p. [Google Scholar]
- Hopkinson, C.; Day, J.; Kjerfve, B. Ecological significance of summer storms on shallow coastal lake and estuarine systems. Contrib. Mar. Sci. 1985, 28, 69–77. [Google Scholar]
- Wiseman, W.J., Jr.; Swenson, E.M.; Power, J. Salinity trends in Louisiana estuaries. Estuaries 1990, 13, 265–271. [Google Scholar] [CrossRef]
- Wissel, B.; Gace, A.; Fry, B. Tracing river influences on phytoplankton dynamics in two Louisiana estuaries. Ecology 2005, 86, 2751–2762. [Google Scholar] [CrossRef]
- Britsch, L.D.; Dunbar, J.B. Land Loss in Coastal Louisiana 1932 to 2001. In A Series of 7 Large Format Maps; Technical Report ERDC/GSL TR-05-13; Engineer Research and Development Center: Vicksburg, MS, USA, 2006. [Google Scholar]
- Condrey, R.E.; Hoffman, P.E.; Evers, D.E. The last naturally active delta complexes of the Mississippi River (LNDM): Discovery and implications. In Perspectives on the Restoration of the Mississippi Delta; Day, J.W., Kemp, G.P., Freemen, A.M., Muth, D.P., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 33–50. [Google Scholar]
- Day, J.W.; Cable, J.E.; Lane, R.R.; Kemp, G.P. Sediment deposition at the Caernarvon crevasse during the great Mississippi Flood of 1927: Implications for coastal restoration. Water 2016, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990; 368p. [Google Scholar]
- Brezonik, P.; Shannon, E. Trophic state of lakes in north central Florida. In Florida Water Resources Research Center; Publ. No. 13; University of Florida: Gainesville, FL, USA, 1971. [Google Scholar]
- DeLaune, R.D.; Jugsujinda, A.; West, J.L.; Johnson, C.B.; Kongchum, M. A screening of the capacity of Louisiana freshwater wetlands to process nitrate in diverted Mississippi River water. Ecol. Eng. 2005, 25, 315–321. [Google Scholar] [CrossRef]
- Rivera-Monroy, V.; Lenaker, P.; Twilley, R.; DeLaune, R.; Lindau, C.; Nuttle, W.; Habib, E.; Fulweiler, R.; Castaneda-Moya, E. Denitrification in coastal Louisiana: A spatial assessment and research needs. J. Sea Res. 2010, 63, 157–172. [Google Scholar] [CrossRef]
- Swenson, E.; Turner, R.E. Past, Present, and Probable Future Salinity Variations in Barataria Estuarine System; Louisiana State University-Coastal Ecology Institute: Baton Rouge, LA, USA, 1998.
- DeLaune, R.; Yu, K.; Devai, I.; Tao, I.R. Water Quality of Upper Barataria Basin: Impact of Nonpoint Source Pollution Associated with Sugarcane Production (St. James Sugarcane Run-off Project); Final Report DEQ Contract No. CFMS597, Grant number C9-996102-08; Louisiana State University: Baton Rouge, LA, USA, 2007; 104p. [Google Scholar]
Variable | SD | CHL | TON | TP | TIN |
---|---|---|---|---|---|
SD | −0.21(−0.17) | −0.17(−0.26) | −0.15(−0.05) | −0.24(−0.28) | |
CHL | −0.21(−0.17) | 0.79(0.38) | 0.35(0.21) | −0.15(0.20) | |
TON | −0.17(−0.26) | 0.79(0.38) | 0.47(0.27) | −0.09(0.21) | |
TP | −0.15(−0.05) | 0.35(0.21) | 0.47(0.27) | 0.07(0.11) | |
TIN | −0.24(−0.28) | −0.15(0.20) | −0.09(0.21) | 0.07(0.11) |
Variable | PC1 (Pre) | PC2 (Pre) | PC1 (Post) | PC2 (Post) | PC1 (Seaton) | PC2 (Seaton) |
---|---|---|---|---|---|---|
SD | 0.473 | 0.078 | 0.383 | 0.491 | 0.509 | 0.000 |
CHL | −0.464 | 0.431 | −0.546 | 0.038 | −0.437 | −0.505 |
TON | −0.536 | 0.022 | −0.520 | 0.389 | −0.464 | −0.426 |
TP | −0.514 | −0.176 | −0.456 | 0.348 | −0.445 | 0.432 |
TIN | −0.091 | −0.886 | 0.278 | 0.697 | −0.368 | 0.615 |
Turner Station | 4-var and Pre | 4-var and Post | 5-var and Pre | 5-var and Post | Seaton Station | 4-var Seaton | 5-var Seaton |
---|---|---|---|---|---|---|---|
BT01 | −2.49 | −1.95 | −2.46 | −1.95 | 1 | 1.95 | 1.83 |
BT02 | −2.35 | −1.77 | −2.37 | −1.77 | 3 | −1.48 | −1.44 |
BT03 | −2.19 | −1.70 | −2.23 | −1.70 | 4 | 0.38 | 0.89 |
BT04 | −1.76 | −1.54 | −1.85 | −1.54 | 5 | 3.03 | 3.91 |
BT05 | −1.35 | −1.34 | −1.52 | −1.34 | 6 | 2.64 | 2.92 |
BT06 | −1.41 | −1.33 | −1.57 | −1.33 | 7 | 2.25 | 1.77 |
BT07 | −1.60 | −1.20 | −1.73 | −1.20 | 8 | 1.31 | 0.99 |
BT08 | −1.46 | −1.10 | −1.60 | −1.10 | 9 | 1.19 | 0.86 |
BT09 | −0.99 | −0.94 | −1.09 | −0.94 | 10 | 1.7 | 1.27 |
BT10 | −0.73 | −0.78 | −0.81 | −0.78 | 11 | 0.64 | 0.29 |
BT11 | −0.79 | −0.70 | −0.84 | −0.70 | 12 | −1.38 | −1.39 |
BT12 | −0.85 | −0.69 | −0.86 | −0.69 | 13 | 0.29 | 0.14 |
BT13 | −0.66 | −0.55 | −0.66 | −0.55 | 14 | 0.8 | 0.69 |
BT14 | −0.89 | −0.53 | −0.85 | −0.53 | 15 | 1.12 | 2.11 |
BT15 | −1.34 | −0.62 | −1.29 | −0.62 | 16 | −0.96 | −0.82 |
BT16 | −0.98 | −0.45 | −0.89 | −0.45 | 17 | −2.34 | −2.23 |
BT17 | −1.19 | −0.43 | −1.09 | −0.43 | 18 | −1.45 | −1.46 |
BT18 | −0.42 | 0.15 | −0.32 | 0.15 | 20 | −1.15 | −1.36 |
BT19 | −0.34 | −0.59 | −0.26 | −0.59 | 21 | −1.94 | −1.73 |
BT20 | −0.13 | −0.49 | −0.01 | −0.49 | 22 | −0.67 | −0.85 |
BT21 | −0.03 | −0.61 | 0.12 | −0.61 | 23 | −1.68 | −1.9 |
BT22 | −0.76 | −0.87 | −0.62 | −0.87 | 24 | −1.73 | −1.8 |
BT23 | −1.58 | −1.20 | −1.50 | −1.20 | 25 | −2.53 | −2.69 |
BT24 | −1.12 | −0.13 | −1.04 | −0.13 | |||
BT25 | −0.01 | 0.66 | 0.01 | 0.66 | |||
BT26 | 0.37 | 0.95 | 0.38 | 0.95 | |||
BT27 | 0.81 | 1.65 | 0.81 | 1.65 | |||
BT28 | 0.79 | 1.89 | 0.80 | 1.89 | |||
BT29 | 1.72 | 3.01 | 1.71 | 3.01 | |||
BT30 | 2.40 | 3.21 | 2.34 | 3.21 | |||
BT31 | 2.53 | 3.32 | 2.48 | 3.32 | |||
BT32 | 3.04 | 3.69 | 2.89 | 3.69 | |||
BT33 | 3.62 | 3.02 | 3.45 | 3.02 | |||
BT34 | 3.27 | 2.56 | 3.30 | 2.56 | |||
BT35 | 3.04 | 2.12 | 3.12 | 2.12 | |||
BT36 | 2.88 | 2.22 | 3.00 | 2.22 | |||
BT37 | 2.95 | 2.25 | 3.05 | 2.25 | |||
EM01 | NA | −1.60 | NA | −1.60 | |||
EM02 | NA | −1.65 | NA | −1.65 | |||
EM03 | NA | −0.07 | NA | −0.07 | |||
EM04 | NA | −0.60 | NA | −0.60 | |||
EM05 | NA | −1.14 | NA | −1.14 | |||
EM06 | NA | −0.11 | NA | −0.11 | |||
EM07 | NA | −1.45 | NA | −1.45 | |||
EM08 | NA | −1.77 | NA | −1.77 | |||
EM09 | NA | −1.09 | NA | −1.09 | |||
CUT1 | NA | 0.29 | NA | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Day, J.W.; Li, B.; Marx, B.D.; Zhao, D.; Lane, R.R. Multivariate Analyses of Water Quality Dynamics Over Four Decades in the Barataria Basin, Mississippi Delta. Water 2020, 12, 3143. https://doi.org/10.3390/w12113143
Day JW, Li B, Marx BD, Zhao D, Lane RR. Multivariate Analyses of Water Quality Dynamics Over Four Decades in the Barataria Basin, Mississippi Delta. Water. 2020; 12(11):3143. https://doi.org/10.3390/w12113143
Chicago/Turabian StyleDay, John W., Bin Li, Brian D. Marx, Dongran Zhao, and Robert R. Lane. 2020. "Multivariate Analyses of Water Quality Dynamics Over Four Decades in the Barataria Basin, Mississippi Delta" Water 12, no. 11: 3143. https://doi.org/10.3390/w12113143
APA StyleDay, J. W., Li, B., Marx, B. D., Zhao, D., & Lane, R. R. (2020). Multivariate Analyses of Water Quality Dynamics Over Four Decades in the Barataria Basin, Mississippi Delta. Water, 12(11), 3143. https://doi.org/10.3390/w12113143