Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Low-Lying Areas
2.2.2. Sea-Level Rise
3. Methodology
3.1. Delineation of Inundation-Prone Areas
3.2. Potential Flood Damage
4. Results
4.1. Flood Analysis and Potentially Inundated Areas
4.2. Flood Damage Analysis
5. Discussion
5.1. Methodological Aspects
5.2. Inundation-Driven Impacts on Study Sites
5.3. Implications for Designing Adaptation Strategies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Category | Land Cover | Main Habitats | ||
---|---|---|---|---|
GR | BL | ED | ||
Urban | Urban areas Buildings Parking areas Urban green areas Roads Infrastructures | Urban and industrial areas, including the associated ruderal vegetation | ||
Urbanized areas, with important clearings of natural vegetation | ||||
Barren | Cliffs, rocky outcrops. Bare, burned, eroded grounds Extraction and discharge areas | Undeveloped urban areas | ||
Abandoned cultivated areas | ||||
Salt mine | Salt mine | Non-existent | Salt mine and industrial salt ponds | |
Cropland | Cultivated areas | Intensive herbaceous crops different from rice (cereals, fodder) | Intensive herbaceous crops different from rice (orchards and garden center) | Rice fields |
Fruit trees | ||||
Vineyards | ||||
Grassland | Scrubland Shrub land Pasture and meadow | Lowland harvesting fields (mainly Gaudinia fragilis) | Lowland hayfields | |
Temperate forest | Various (conifer, deciduous, evergreen trees) | Riverside woodlands | Pinewoods (Pinus pinea) and understory | Riverside woodlands |
Residual dunes with pine trees (Pinus pinea, Pinus pinaster) | ||||
Beach and dunes | Beach, dunes and sandy areas | Sandy beaches | ||
Dunes and dune slacks | ||||
Coastal vegetation | Shrubby and herbaceous communities on salt or gypsaceous soils | Salicornia sp. Swards | ||
Junciform-leaved Spartina versicolor grassland of coastal sand muds | ||||
Juncus maritimus beds of coastal and inland long-inundated, brackish depressions | ||||
Wetland | Freshwater marsh | Non-existent | Lowland Cladium mariscus beds of riversides | |
Brackish marsh | Reed beds | |||
Bulrush beds (Scirpus spp.) | Cane formation along water courses | Bulrush beds (Scirpus spp.) | ||
Coastal lagoon | Freshwater ponds | Standing fresh waters | ||
Saltwater/brackish lagoons | Vegetated/non-vegetated lagoon | |||
Non-existent | Mud and sand flats |
References
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risk of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Valiela, I. Global Coastal Change; Wiley-Blackwell: Hoboken, NJ, USA, 2006; p. 376. [Google Scholar]
- Fitzgerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal impacts due to sea level rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.; Kettner, A.J.; Overeem, I.; Hutton, E.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea level rise and deltas: Causes of change and human dimension implications. Global Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Brown, S.; Hanson, S.; Hinkel, J. Economics of Coastal Zone Adaptation to Climate Change; Development and Climate Change Discussion Paper No. 10; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Nicholls, R.J.; Hoozemans, F.M.J. The Mediterranean: Vulnerability to coastal implications of climate change. Ocean Coast. Manag. 1996, 31, 105–132. [Google Scholar] [CrossRef]
- UNEP. State of the Environment and Development in the Mediterranean; United Nations Environment Programme/Mediterranean Action Plan (UNEP/MAP)-Plan Bleu: Athens, Greece, 2009; p. 204. [Google Scholar]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Bondesan, M.; Castiglioni, G.B.; Elmis, C.; Gabbianellis, G.; Marocco, R.; Pirazzolift, P.A.; Tomasin, A. Coastal areas at risk from storm surges and sea-level rise in northeastern Italy. J. Coast. Res. 1995, 11, 1354–1379. [Google Scholar]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; de Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, F.; Falco, G.D.; Presti, V.L.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Brunel, C.; Sabatier, F. Potential influence of sea-level rise in controlling shoreline position on the French Mediterranean Coast. Geomorphology 2009, 107, 47–57. [Google Scholar] [CrossRef]
- Frihy, O.E.; El-Sayed, M.K. Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 1215–1237. [Google Scholar] [CrossRef]
- Brenner, J.; Jiménez, J.A.; Sardá, R. Environmental indicators GIS of the Catalan coast. J. Coast. Conserv. 2008, 11, 185–191. [Google Scholar] [CrossRef]
- Brenner, J.; Jiménez, J.A.; Sardá, R.; Garola, A. An assessment of the non-market value of the ecosystem services provided by the Catalan coastal zone, Spain. Ocean Coast. Manag. 2010, 53, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Arcilla, A.; Jiménez, J.A.; Valdemoro, H.I. The Ebro Delta: Morphodynamics and vulnerability. J. Coast. Res. 1998, 14, 755–772. [Google Scholar]
- Sánchez-Arcilla, A.; Jiménez, J.A.; Valdemoro, H.I.; Gracia, V. Implications of climatic change on Spanish Mediterranean low-lying coasts: The Ebro Delta case. J. Coast. Res. 2008, 24, 306–316. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V.; Alizad, K.; Wang, D. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth’s Future 2015, 3, 159–181. [Google Scholar] [CrossRef]
- Poulter, B.; Halpin, P.N. Raster modelling of coastal flooding from sea-level rise. Int. J. Geogr. Inf. Syst. 2008, 22, 167–182. [Google Scholar] [CrossRef]
- Gallien, T.W.; Schubert, J.E.; Sanders, B.F. Predicting tidal flooding of urbanized embayments: A modeling framework and data requirements. Coast. Eng. 2011, 58, 567–577. [Google Scholar] [CrossRef]
- Leatherman, S.P. Modeling shore response to sea-level rise on sedimentary coasts. Prog. Phys. Geog. 1990, 14, 447–464. [Google Scholar] [CrossRef]
- Gutierrez, B.T.; Williams, S.J.; Thieler, E.R. Ocean coasts. In Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region; Titus, J.G., Ed.; Environmetal Protection Agency: Washington, DC, USA, 2009; pp. 43–56. [Google Scholar]
- Alvarado-Aguilar, D.; Jiménez, J.A.; Nicholls, R.J. Flood hazard and damage assessment in the Ebro Delta (NW Mediterranean) to relative sea level rise. Nat. Hazards 2012, 62, 1301–1321. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R.; D’Alpaos, A.; Morris, J.T.; Mudd, S.M.; Temmerman, S. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Lentz, E.E.; Thieler, E.R.; Plant, N.G.; Stippa, S.R.; Horton, R.M.; Gesch, D.B. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Chang. 2016, 6, 696–700. [Google Scholar] [CrossRef]
- Van De Lageweg, W.I.; Slangen, A. Predicting dynamic coastal delta change in response to sea-level rise. J. Mar. Sci. Eng. 2017, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Craft, C.; Clough, J.; Ehman, J.; Jove, S.; Park, R.; Pennings, S.; Guo, H.; Machmuller, M. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 2009, 7, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Traill, L.W.; Perhans, K.; Lovelock, C.E.; Prohaska, A.; McFallan, S.; Rhodes, J.R.; Wilson, K.A. Managing for change: Wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 2011, 17, 1225–1233. [Google Scholar] [CrossRef]
- Glick, P.; Clough, J.; Polaczyk, A.; Couvillion, B.; Nunley, B. Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana. J. Coast. Res. 2013, 63, 211–233. [Google Scholar] [CrossRef]
- Clough, J.S.; Polaczyk, A.; Propato, A. SLAMM 6.7.Beta, Users Manual; Warren Pinnacle Consulting Inc.: Warren, VT, USA, 2016; p. 39. [Google Scholar]
- Mcleod, E.; Poulter, B.; Hinkel, J.; Reyes, E.; Salm, R. Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean Coast. Manag. 2010, 53, 507–517. [Google Scholar] [CrossRef]
- Prado, P.; Alcaraz, C.; Benito, X.; Caiola, N.; Ibáñez, C. Pristine vs. human-altered Ebro Delta habitats display contrasting resilience to RSLR. Sci. Total Environ. 2019, 655, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.L.; Guzman, J.A.; Muñoz-Carpena, R.; Kiker, G.A.; Linkov, I. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion, and nourishment. Environ. Modell. Softw. 2014, 52, 111–120. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Valdemoro, H.I.; Bosom, E.; Sánchez-Arcilla, A.; Nicholls, R.J. Impacts of sea-level rise-induced erosion on the Catalan coast. Reg. Environ. Chang. 2017, 17, 593–603. [Google Scholar] [CrossRef]
- López-Dóriga, U.; Jiménez, J.A.; Nicholls, R.J. Impact of sea-level rise on the tourist-carrying capacity of Catalan beaches. Ocean Coast. Manag. 2019, 170, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, C. The Coastal Risk Landscape Application on the Catalan Coast; Universitat Politècnica de Catalunya, Departament d’Enginyeria Civil i Ambiental: Barcelona, Spain, 2017. [Google Scholar]
- IDESCAT. Anuari Estadístic de Catalunya. Institut d’Estadística de Catalunya. Generalitat de Catalunya. Available online: www.idescat.cat (accessed on 1 April 2020).
- Brenner, J.; Jiménez, J.A.; Sardá, R. Definition of homogeneous environmental management units for the Catalan coast. Environ. Manag. 2006, 8, 993–1005. [Google Scholar] [CrossRef]
- Sauri, D.; Breton, F.; Ribas, A.; Llurdes, J.C.; Romagosa, F. Policy and Practice. The Ecological Values of Traditional Land Use in Low-lying Coastal Environments: The Example of the Aiguamolls de L’Emporda, Costa Brava. J. Environ. Plan. Manag. 2010, 43, 277–290. [Google Scholar] [CrossRef]
- Paül, V.; McKenzie, F.H. Agricultural areas under metropolitan threats: Lessons for Perth from Barcelona. In Demographic Change in Australia’s Rural Landscapes; Luck, G., Black, R., Race, D., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 12, pp. 125–152. [Google Scholar] [CrossRef]
- Zografos, C. Flows of sediment, flows of insecurity: Climate change adaptation and the social contract in the Ebro Delta, Catalonia. Geoforum 2017, 80, 49–60. [Google Scholar] [CrossRef]
- Garcia-Lozano, C.; Pintó, J. Current status and future restoration of coastal dune systems on the Catalan shoreline (Spain, NW Mediterranean Sea). J. Coast. Conserv. 2018, 22, 519–532. [Google Scholar] [CrossRef]
- ICGC. Institut Cartogràfic I Geològic de Catalunya. Generalitat de Catalunya. Available online: www.icgc.cat (accessed on 1 January 2020).
- Mapa de Cubiertas del Suelo de Cataluña: Características de la Tercera Edición y Relaciones con SIOSE. Available online: https://www.creaf.uab.es/mcsc/textos/MCSC-3_SIOSE.pdf (accessed on 18 November 2020).
- Generalitat de Catalunya. Cartografia Dels Hábitats a Catalunya, Versió 2, 2018. Departament de Territori i Sostenibilidad. Territori i Patrimoni Natural. Available online: http://mediambient.gencat.cat/es/05_ambits_dactuacio/patrimoni_natural/sistemes_dinformacio/habitats/ (accessed on 1 January 2020).
- Generalitat de Catalunya. Cartografia Dels Hábitats D’interès Comunitari a Catalunya, Versió 2, 2018. Departament de Territori i Sostenibilidad. Territori i Patrimoni Natural. Available online: http://territori.gencat.cat/ca/01_departament/12_cartografia_i_toponimia/bases_cartografiques/medi_ambient_i_sostenibilitat/bases_miramon/territori/31_habitats_hic/ (accessed on 8 January 2020).
- Generalitat de Catalunya. Inventari de Zones Humides. Departament de Territori i Sostenibilidad. Territori i Patrimoni Natural. Available online: http://mediambient.gencat.cat/es/05_ambits_dactuacio/patrimoni_natural/sistemes_dinformacio/zones_humides/ (accessed on 8 January 2020).
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Sayol, J.M.; Marcos, M. Assessing flood risk under sea level rise and extreme sea levels scenarios: Application to the Ebro delta (Spain). J. Geophys. Res. 2018, 123, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C. Upper limit for sea level projections by 2100. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Hinkel, J.; Jaeger, C.; Nicholls, R.J.; Lowe, J.; Renn, O.; Peijun, S. Sea-level rise scenarios and coastal risk management. Nat. Clim. Chang. 2015, 5, 188–190. [Google Scholar] [CrossRef]
- CADS. RISKCAT: Els Riscos Naturals a Catalunya. Informe Executiu. Technical Report, Consell Assessor per al Desenvolupament Sostenible, Generalitat de Catalunya, Barcelona. 2008. Available online: http://cads.gencat.cat/es/detalls/detallpublicacio/RISKCAT.-Els-riscos-naturals-a-Catalunya (accessed on 8 January 2020).
- Somoza, L.; Barnolas, A.; Arasa, A.; Maestro, A.; Rees, J.G.; Hernández-Molina, F.J. Architectural stacking patterns of the Ebro delta controlled by Holocene high-frequency eustatic fluctuations, delta-lobe switching and subsidence processes. Sediment. Geol. 1997, 117, 11–32. [Google Scholar] [CrossRef]
- Ibáñez, C.; Canicio, A.; Day, J.W.; Curcó, A. Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain. J. Coast. Conserv. 1997, 3, 191–202. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Valdemoro, H.I.; Gracia, V.; Nieto, F. Processes reshaping the Ebro delta. Mar. Geol. 1997, 144, 59–79. [Google Scholar] [CrossRef]
- Pérez-Aragüés, F.; Pipia, L. Ebro Delta Subsidence. Historical 1992-2010; Technical Report, 2015; Project Ebro ADMICLIM, European Commission LIFE Programme: Catalunya, Spain, 2015; p. 88. [Google Scholar]
- Duro, J.; Inglada, J.; Closa, J.; Adam, N.; Arnaud, A. High resolution differential interferometry using time series of ERS and Envisat SAR Data. In Proceedings of the FRINGE 2003 Workshop, Frascati, Italy, 20 August 2004. [Google Scholar]
- Giménez, J.; Suriñach, E.; Fleta, J.; Goula, X. Recent vertical movements from high-precision levelling data in northeast Spain. Tectonophysics 1996, 263, 149–161. [Google Scholar] [CrossRef]
- Bruun, P. Sea-level rise as a cause of shore erosion. J. Waterw. Harbours Div. 1962, 88, 117–132. [Google Scholar]
- Cooper, J.A.G.; Pilkey, O.H. Sea-level rise and shoreline retreat: Time to abandon the Bruun rule. Global Planet. Chang. 2004, 43, 157–171. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Oliveros, C.; Castell, B.; Garcin, M.; Idier, D.; Pedreros, R.; Rohmer, J. Uncertainties in sandy shorelines evolution under the Bruun rule assumption. Front. Mar. Sci. 2016, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, R. On the need for a new generation of coastal change models for the 21st century. Sci. Rep. 2020, 10, 2010. [Google Scholar] [CrossRef]
- Toimil, A.; Camus, P.; Losada, I.J.; Le Cozannet, G.; Nicholls, R.J.; Idier, D.; Maspataud, A. Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. Earth Sci. Rev. 2020, 202, 103110. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Callaghan, D.; Stive, M.J.F. Estimating coastal recession due to sea level rise: Beyond the Bruun rule. Clim. Change 2012, 110, 561–574. [Google Scholar] [CrossRef] [Green Version]
- CIIRC. Estat de la Zona Costanera a Catalunya; International Centre for Coastal Resources Research: Barcelona, Spain, 2010; p. 25. [Google Scholar]
- Cowell, P.J.; Hanslow, D.J.; Meleo, J.F. Beach morphodynamics—The shoreface. In Handbook of Beach and Shoreface Morphodynamics; Short, A.D., Ed.; John Wiley and Sons: New York, NY, USA, 1999; pp. 39–71. [Google Scholar]
- Jiménez, J.A.; Sánchez-Arcilla, A. A long-term (decadal scale) evolution model for microtidal barrier systems. Coast. Eng. 2004, 51, 749–764. [Google Scholar] [CrossRef]
- Valdemoro, H.I.; Sánchez-Arcilla, A.; Jiménez, J.A. Coastal dynamics and wetlands stability. The Ebro delta case. Hydrobiologia 2007, 577, 17–29. [Google Scholar] [CrossRef]
- Durán, R.; Guillén, J.; Ruiz, A.; Jiménez, J.A.; Sagristà, E. Morphological changes, beach inundation and overwash caused by an extreme storm on a low-lying embayed beach bounded by a dune system (NW Mediterranean). Geomorphology 2006, 274, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Benito, X.; Trobajo, R.; Ibáñez, C. Modelling habitat distribution of Mediterranean coastal wetlands: The Ebro Delta as case study. Wetlands 2004, 34, 775–785. [Google Scholar] [CrossRef]
- Mogensen, L.A.; Rogers, K. Validation and comparison of a model of the effect of sea-level rise on coastal wetlands. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Spencer, T.; Schuerch, M.; Nicholls, R.J.; Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Reef, R.; McFadden, L.; Brown, S. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global Planet. Chang. 2016, 139, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, C.; Sharpe, P.J.; Day, J.W.; Day, J.N.; Prat, N. Vertical accretion and relative sea level rise in the Ebro Delta Wetlands (Catalonia, Spain). Wetlands 2010, 30, 979–988. [Google Scholar] [CrossRef]
- Tabak, N.M.; Laba, M.; Spector, S. Simulating the effects of sea level rise on the resilience and migration of tidal wetlands along the Hudson River. PLoS ONE 2016, 11, e0152437. [Google Scholar] [CrossRef] [Green Version]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil salinity: A threat to global food security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Tully, K.; Gedan, K.; Epanchin-Niell, R.; Strong, A.; Bernhardt, E.S.; BenDor, T.; Mitchell, M.; Kominoski, J.; Jordan, T.E.; Neubauer, S.C.; et al. The invisible flood: The chemistry, ecology, and social implications of coastal saltwater intrusion. BioScience 2012, 69, 368–378. [Google Scholar] [CrossRef]
- Genua-Olmedo, A.; Alcaraz, C.; Caiola, N.; Ibáñez, C. Sea level rise impacts on rice production: The Ebro Delta as an example. Sci. Total Environ. 2016, 571, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Soy-Massoni, E.; Langemeyer, J.; Varga, D.; Sáez, M.; Pintó, J. The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia. Ecosys. Serv. 2016, 17, 43–52. [Google Scholar] [CrossRef]
- Serra, P.; Saurí, D.; Salvati, L. Peri-urban agriculture in Barcelona: Outlining landscape dynamics vis à vis socio-environmental functions. Landsc. Res. 2018, 43, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Maas, E.V.; Grattan, S.R. Crop yields as affected by salinity. Agric. Drain. 1999, 38, 55–108. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Meyer, E.; Simancas, J.; Jensen, N. Conservation at California’s edge. Fremontia 2016, 44, 8–15. [Google Scholar]
- Fagherazzi, S.; Anisfeld, S.C.; Blum, L.K.; Long, E.; Feagin, R.A.; Fernandes, A.; Kearney, W.S.; Williams, K. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 2019, 7, 25. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Gedan, K.B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Chang. 2019, 9, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.G.; Maurmeyer, E.M. Models for beach profile response. In Handbook of Coastal Processes and Erosion; Komar, D., Ed.; CRC Press: Boca Raton, FL, USA, 1983; pp. 151–166. [Google Scholar]
- Rosati, J.D.; Dean, R.G.; Walton, T.L. The modified Bruun Rule extended for landward transport. Mar. Geol. 2013, 340, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the Earth Sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rykiel, E.J., Jr. Testing ecological models: The meaning of validation. Ecol. Model. 1996, 90, 229–244. [Google Scholar] [CrossRef]
- Rogel, J.A.; Ariza, F.A.; Silla, R.O. Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 2000, 20, 357–372. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Todd, M.J.; Muneepeerakul, R.; Pumo, D.; Azaele, S.; Miralles-Wilhelm, F.; Rinaldo, A.; Rodriguez-Iturbe, I. Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida. Adv. Water Resour. 2010, 33, 1279–1289. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Reed, D.J.; Day, J.W., Jr. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar. Geol. 1995, 128, 1–9. [Google Scholar] [CrossRef]
- Reed, D.J. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surf. Proc. Land. 1995, 20, 39–48. [Google Scholar] [CrossRef]
- Ibáñez, C.; Canicio, A.; Curcó, A.; Day, J.W.; Prat, N. Evaluation of Vertical Accretion and Subsidence Rates; MEDDELT Final Report; Ebre Delta Plain Working Group, University of Barcelona: Barcelona, Spain, 1996. [Google Scholar]
- Rovira, A.; Alcaraz, C.; Ibáñez, C. Spatial and temporal dynamics of suspended load at-a-cross-section: The lowermost Ebro River (Catalonia, Spain). Water Res. 2012, 46, 3671–3681. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.A.; Sánchez-Arcilla, A. Medium-term coastal response at the Ebro delta, Spain. Mar. Geol. 1993, 114, 105–118. [Google Scholar] [CrossRef]
- Rodríguez, J.F.; Saco, P.M.; Sandi, S.; Saintilan, N.; Riccardi, G. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nat. Commun. 2017, 8, 16094. [Google Scholar] [CrossRef]
- Sandi, S.G.; Rodríguez, J.F.; Saintilan, N.; Riccardi, G.; Saco, P.M. Rising tides, rising gates: The complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions. Adv. Wat. Resour. 2018, 114, 135–148. [Google Scholar] [CrossRef]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Anzidei, M.; Serpelloni, E.; Florindo, F. Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water 2019, 11, 1480. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Temmerman, S.; Skeehan, E.E.; Guntenspergen, G.R.; Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Chang. 2016, 6, 253–260. [Google Scholar] [CrossRef]
- Wolters, M.; Garbutt, A.; Bakker, J.P. Salt-marsh restoration: Evaluating the success of de-embankments in north-west Europe. Biol. Conserv. 2005, 123, 249–268. [Google Scholar] [CrossRef]
- Borchert, S.M.; Osland, M.J.; Enwright, N.M.; Griffith, K.T. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 2018, 55, 2876–2887. [Google Scholar] [CrossRef]
- White, E.; Kaplan, D. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosyst. Health Sust. 2017, 3, e01258. [Google Scholar] [CrossRef] [Green Version]
- McKee, K.L.; Mendelssohn, I.A. Response of a freshwater marsh plant community to increased salinity and increased water level. Aquat. Bot. 1989, 34, 301–316. [Google Scholar] [CrossRef]
- Day, J.W.; Britsch, L.D.; Hawes, S.R.; Shaffer, G.P.; Reed, D.J.; Cahoon, D. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries 2000, 23, 425–438. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Comunitat General de Regants del Canal de la Dreta del Ebre. Informe-síntesis sobre la problemática y la vulnerabilidad del delta del Ebro. In Propuesta de Medidas Generales en el Ámbito del Delta; Unpublished report; Amposta, Spain, 2017. [Google Scholar]
- Van Staveren, M.F.; Warner, J.F.; van Tatenhove, J.P.; Wester, P. Let’s bring in the floods: De-poldering in the Netherlands as a strategy for long-term delta survival? Water Int. 2014, 39, 686–700. [Google Scholar] [CrossRef]
- Wesselink, A.; Warner, J.; Syed, M.A.; Chan, F.; Tran, D.D.; Huq, H.; Huthoff, F.; Le Thuy, N.; Pinter, N.; Van Staveren, M.F.; et al. Trends in flood risk management in deltas around the world: Are we going ‘soft’. Int. J. Water Gov. 2015, 4, 25–46. [Google Scholar] [CrossRef]
- Suckall, N.; Tompkins, E.L.; Nicholls, R.J.; Kebede, A.S.; Lázár, A.N.; Hutton, C.; Vincent, K.; Allan, A.; Chapman, A.; Rahman, R.; et al. A framework for identifying and selecting long-term adaptation policy directions for deltas. Sci. Total Environ. 2018, 633, 946–957. [Google Scholar] [CrossRef] [Green Version]
- Hoggart, S.P.G.; Hanley, M.E.; Parker, D.J.; Simmonds, D.J.; Bilton, D.T.; Filipova-Marinova, M.; Franklin, E.L.; Kotsev, I.; Penning-Rowsell, E.C.; Rundle, S.; et al. The consequences of doing nothing: The effects of seawater flooding on coastal zones. Coast. Eng. 2014, 87, 169–182. [Google Scholar] [CrossRef]
- Haasnoot, M.; Brown, S.; Scussolini, P.; Jiménez, J.A.; Vafeidis, A.T.; Nicholls, R.J. Generic adaptation pathways for coastal archetypes under uncertain sea-level rise. Environ. Res. Commun. 2019, 1, 071006. [Google Scholar] [CrossRef]
- Enwright, N.M.; Griffith, K.T.; Osland, M.J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 2016, 14, 307–316. [Google Scholar] [CrossRef]
- Myatt, L.B.; Scrimshaw, M.D.; Lester, J.N. Public perceptions and attitudes towards a forthcoming managed realignment scheme: Freiston Shore, Lincolnshire, UK. Ocean Coast. Manag. 2003, 46, 565–582. [Google Scholar] [CrossRef]
- Ledoux, L.; Cornell, S.; O’Riordan, T.; Harvey, R.; Banyard, L. Towards sustainable flood and coastal management: Identifying drivers of, and obstacles to, managed realignment. Land Use Policy 2005, 22, 129–144. [Google Scholar] [CrossRef]
- Parrott, A.; Burningham, H. Opportunities of, and constraints to, the use of intertidal agri-environment schemes for sustainable coastal defence: A case study of the Blackwater Estuary, southeast England. Ocean Coast. Manag. 2008, 51, 352–367. [Google Scholar] [CrossRef]
- Fatorić, S.; Chelleri, L. Vulnerability to the effects of climate change and adaptation: The case of the Spanish Ebro Delta. Ocean Coast. Manag. 2012, 60, 1–10. [Google Scholar] [CrossRef]
- Roca, E.; Villares, M. Public perceptions of managed realignment strategies: The case study of the Ebro Delta in the Mediterranean basin. Ocean Coast. Manag. 2012, 60, 38–47. [Google Scholar] [CrossRef]
- Roca, E.; Villares, M.; Fernández, E. Social perception on conservation strategies in the Costa Brava, Spain. J. Coast. Res. 2011, 61, 205–210. [Google Scholar] [CrossRef]
- Hinkel, J.; Aerts, J.C.; Brown, S.; Jiménez, J.A.; Lincke, D.; Nicholls, R.J.; Scussolini, P.; Sánchez-Arcilla, A.; Vafeidis, A.T.; Addo, K.A. The ability of societies to adapt to twenty-first-century sea-level rise. Nat. Clim. Chang. 2018, 8, 570–578. [Google Scholar] [CrossRef]
- Figueras, M.T.B.; Farrés, M.C.P.; Pérez, G.R. The carrying capacity of cycling paths as a management instrument. The case of Ebro delta (Spain). Ekológia (Bratisl.) 2011, 30, 438–451. [Google Scholar] [CrossRef]
- Fatorić, S.; Morén-Alegret, R.; Kasimis, C. Exploring climate change effects in Euro-Mediterranean protected coastal wetlands: The cases of Aiguamolls de l’Empordà, Spain and Kotychi-Strofylia, Greece. Int. J. Sustain. Dev. World Ecol. 2014, 21, 346–360. [Google Scholar] [CrossRef]
Gulf of Roses (GR) | Llobregat Delta (LD) | Ebro Delta (ED) | ||
---|---|---|---|---|
Population (inhabitants in coastal comarcas) | 137,951 | 818,883 | 145,496 | |
Coastal geomorphology | Active sandy coastline | Active sandy coastline with high dune fields areas | Active sandy outer shoreline and passive muddy semi-enclosed bays | |
Analyzed surface (ha) | 850 | 4228 | 33,168 | |
% Surface by elevation range above MSL | <0.5 | 6.48 | 6.21 | 53.06 |
0.5–1 | 9.90 | 9.11 | 20.01 | |
1–2 | 27.23 | 37.42 | 17.35 | |
2–3 | 18.72 | 30.83 | 6.25 | |
>3 | 37.66 | 16.43 | 3.32 | |
% Urban surface | 12.06 | 36.66 | 7.03 | |
% Cropland surface | 63.90 | 26.34 | 68.42 |
Gulf of Roses | Llobregat Delta | Ebro Delta | |
---|---|---|---|
Shoreface slope | 1/87.5 | 1/100 | 1/225 |
Critical beach width (m) | 80 | 60 | 100 |
Initial Habitat Type | Final Habitat Type | Sea-Level Criteria |
---|---|---|
Cropland Grassland Temperate forest | Halophyte vegetation | HSL–MSL |
Transitional wetland | MSL–LSL | |
Coastal lagoon | <LSL | |
Coastal vegetation Wetland | Transitional wetland | MSL–LSL |
Coastal lagoon | <LSL | |
Coastal lagoon | Coastal lagoon | <MSL |
Year | Scenario | GR | LD | ED | |||
---|---|---|---|---|---|---|---|
Ha | % | Ha | % | Ha | % | ||
2050 | RCP4.5 | 83 | 0.98 | 40 | 0.94 | 2923 | 8.81 |
RCP8.5 | |||||||
H+ | 169 | 1.99 | 67 | 1.59 | 8856 | 26.70 | |
2100 | RCP4.5 | 224 | 2.64 | 99 | 2.34 | 12,215 | 36.83 |
RCP8.5 | 579 | 6.81 | 169 | 4.01 | 16,881 | 50.90 | |
H+ | 2970 | 34.92 | 1518 | 35.91 | 26,838 | 80.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Dóriga, U.; Jiménez, J.A. Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain. Water 2020, 12, 3252. https://doi.org/10.3390/w12113252
López-Dóriga U, Jiménez JA. Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain. Water. 2020; 12(11):3252. https://doi.org/10.3390/w12113252
Chicago/Turabian StyleLópez-Dóriga, Uxía, and José A. Jiménez. 2020. "Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain" Water 12, no. 11: 3252. https://doi.org/10.3390/w12113252
APA StyleLópez-Dóriga, U., & Jiménez, J. A. (2020). Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain. Water, 12(11), 3252. https://doi.org/10.3390/w12113252