The Impacts of Climate Change on Wastewater Treatment Costs: Evidence from the Wastewater Sector in China
Abstract
:1. Introduction
2. Literature Review
“Due to omitted variables concerns in the cross-sectional approach the recent literature has preferred the latter panel approach, noting that while average climate could be correlated with other time-invariant factors unobserved to the econometrician, short-run variation in climate within a given area (typically termed “weather”) is plausibly random and thus better identifies the effect of changes in climate variables on economic outcomes.While using variation in weather helps to solve identification problems, it perhaps more poorly approximates the ideal climate change experiment. In particular, if agents can adjust in the long run in ways that are unavailable to them in the short run, then impact estimates derived from shorter run responses to weather might overstate damages from longer run changes in climate.”
3. Wastewater Treatment in China and Data
3.1. The Wastewater Sector of China
3.2. Description of the Data
4. Methodology
4.1. Empirical Specifications
4.2. Simulation Procedure
5. Estimation Results
6. Simulations of Future Policy Impacts
6.1. Climate Predictions
6.2. Policy Scenarios
6.3. Simulation Results
7. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Different Cost Treatment Model Specifications
Variable\Model | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Investment () | 0.518 (0.133) | 0.006 (0.003) | 0.011 (0.005) | 0.273 (0.069) | 0.287 (0.070) |
Capacity () | 1.168 (0.327) | 0.056 (0.026) | 0.199 (0.039) | 0.523 (0.166) | 0.504 (0.169) |
Volume () | −0.276 (0.293) | −0.004 (0.028) | −0.078 (0.042) | −0.050 (0.149) | −0.034 (0.150) |
Tenure () | −0.231 (0.166) | 0.009 (0.009) | −0.014 (0.013) | 0.120 (0.083) | 0.002 (0.007) |
Quality Parameters | |||||
BOD Influent () | 0.313 (0.152) | 0.001 (0.001) | 0.001 (0.001) | 0.170 (0.078) | 0.186 (0.078) |
BOD Effluent () | −0.147 (0.124) | 0.001 (0.007) | −0.003 (0.010) | −0.014 (0.063) | −0.023 (0.063) |
Climate Indicators | |||||
Hist. Mean Temp. () | −0.485 (0.441) | 0.008 (0.030) | −0.017 (0.045) | 0.004 (0.026) | 0.002 (0.026) |
Hist. Intra-Ann. Temp. Var. () | 0.053 (0.265) | 0.006 (0.003) | 0.003 (0.004) | 0.004 (0.002) | 0.004 (0.002) |
Mean Temp. Ratio () | −0.128 (2.845) | −1.517 (1.446) | −1.279 (2.132) | −0.765 (1.201) | −0.53 (1.207) |
Intra-Ann. Temp Var. Ratio () | 1.620 (1.609) | 1.798 (0.905) | 2.031 (1.335) | 2.782 (0.814) | 2.305 (0.771) |
Constant Term | −0.190 (2.164) | −1.044 (2.190) | 0.425 (3.230) | −4.438 (1.891) | −4.035 (1.883) |
Adjusted R2 | 0.599 | 0.506 | 0.675 | 0.650 | 0.646 |
Ramsey (3,142) | 16.099 | 12.231 | 1.150 | 1.879 | 1.751 |
Variable\Model | (1) a,c | (2) b,c | (3) a,d | (4) b,d |
---|---|---|---|---|
Investment () | 0.231 (0.081) | 0.275 (0.066) | 0.259 (0.066) | 0.232 (0.083) |
Capacity () | 0.481 (0.224) | 0.464 (0.201) | 0.497 (0.19) | 0.486 (0.214) |
Volume () | −0.022 (0.200) | −0.040 (0.181) | −0.054 (0.172) | −0.066 (0.192) |
Tenure () | 0.042 (0.118) | 0.046 (0.107) | 0.095 (0.109) | 0.102 (0.132) |
Quality Parameters | ||||
BOD Influent () | 0.097 (0.115) | 0.119 (0.105) | 0.139 (0.105) | 0.108 (0.119) |
BOD Effluent () | −0.015 (0.064) | −0.015 (0.058) | −0.039 (0.051) | −0.035 (0.061) |
Climate Indicators | ||||
Hist. Mean Temp. () | 0.120 (0.200) | 0.103 (0.196) | 0.173 (0.194) | 0.137 (0.242) |
Hist. Intra-Ann. Temp. Var. () | 0.456 (0.099) | 0.401 (0.092) | 0.471 (0.105) | 0.459 (0.109) |
Mean Temp. Ratio () | −0.149 (1.415) | −0.005 (1.469) | −0.257 (1.168) | 0.171 (1.715) |
Intra-Ann. Temp Var. Ratio () | 2.326 (1.29) | 2.436 (1.134) | 1.907 (1.055) | 2.650 (1.183) |
Constant Term | −3.693 (0.773) | −3.609 (0.757) | −4.251 (0.748) | −3.851 (0.905) |
Adjusted R2 | 0.649 | 0.650 | 0.685 | 0.634 |
Variable\Model | 2SLS | GMM |
---|---|---|
Investment () | 0.265 (0.066) | 0.267 (0.058) |
Capacity () | 0.564 (0.158) | 0.557 (0.168) |
Volume () | −0.091 (0.142) | −0.085 (0.159) |
Tenure () | 0.076 (0.081) | 0.073 (0.095) |
Quality Parameters | ||
BOD Influent () | 0.173 (0.081) | 0.175 (0.098) |
BOD Effluent () | −0.049 (0.129) | −0.048 (0.115) |
Climate Indicators | ||
Hist. Mean Temp. () | 0.088 (0.212) | 0.087 (0.165) |
Hist. Intra-Ann. Temp. Var. () | 0.383 (0.133) | 0.379 (0.099) |
Mean Temp. Ratio () | −0.728 (1.371) | −0.714 (1.017) |
Intra-Ann. Temp Var. Ratio () | 2.174 (0.777) | 2.175 (0.953) |
Constant Term | −3.769 (1.039) | −3.762 (0.694) |
Endogeneity Test (H0: Variable is Exogenous) | ||
Durbin score (2SLS)/GMM C (GMM): | 0.029 | 0.034 |
Wu-Hausman (2SLS): F(1,144) | 0.025 | |
Overidentification (H0: No Overidentification) | ||
Sargan score (2SLS)/ Hansen’s J (GMM): | 0.020 | 0.029 |
Basmann (2SLS): | 0.017 | |
Adjusted R2 | 0.659 | 0.659 |
Variable\Model | Coefficients |
---|---|
Investment () | 0.148 (0.068) |
Capacity () | 0.715 (0.164) |
Volume () | −0.109 (0.143) |
Tenure () | −0.063 (0.079) |
Quality Parameters | |
BOD Influent () | 0.177 (0.078) |
BOD Effluent () | −0.044 (0.063) |
Constant Term | −1.348 (0.565) |
Adjusted R2 | 0.714 |
Appendix B. Observed and Predicted Climate in China
References
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Reznik, A.; Feinerman, E.; Finkelshtain, I.; Fisher, F.; Huber-Lee, A.; Joyce, B.; Kan, I. Economic implications of agricultural reuse of treated wastewater in Israel: A statewide long-term perspective. Ecol. Econ. 2017, 135, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Tol, R.S.J. Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates. Environ. Resour. Econ. 2002, 21, 47–73. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report. 2018. Available online: https://www.un.org/development/desa/publications/the-sustainable-development-goals-report-2018.html (accessed on 6 August 2018).
- Mideksa, T.K.; Kallbekken, S. The impact of climate change on the electricity market: A review. Energy Policy 2010, 38, 3579–3585. [Google Scholar] [CrossRef]
- Kusangaya, S.; Warburton, M.L.; Van Garderen, E.A.; Jewitt, G.P. Impacts of climate change on water resources in southern Africa: A review. Phys. Chem. Earth Parts A/B/C 2014, 67, 47–54. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R. Impact and adaptation of South-East Asian farmers to climate change: Conclusions and policy recommendations. Clim. Chang. Econ. 2017, 8, 1740007. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S.; Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability; Chapter 3, Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 229–269. [Google Scholar]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, J.; Kan, I.; Fleischer, A. A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach. Am. J. Agric. Econ. 2013, 95, 70–93. [Google Scholar] [CrossRef]
- Burke, M.; Emerick, K. Adaptation to Climate Change: Evidence from US Agriculture. Am. Econ. Journal: Econ. Policy 2016, 8, 106–140. [Google Scholar] [CrossRef] [Green Version]
- McCarl, B.A.; Thayer, A.W.; Jones, J.P.H. The challenge of climate change adaptation for agriculture: An economically oriented review. J. Agric. Appl. Econ. 2016, 48, 321–344. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach. Am. Econ. Rev. 2005, 95, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Deschênes, O.; Greenstone, M. The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef] [Green Version]
- Plósz, B.G.; Liltved, H.; Ratnaweera, H. Climate change impacts on activated sludge wastewater treatment: A case study from Norway. Water Sci. Technol. 2009, 60, 533–541. [Google Scholar] [CrossRef]
- U.S. Global Change Research Program. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II; U.S. Global Change Research Program: Washington, DC, USA, 2018; p. 1515. [Google Scholar]
- McMahan, E.K. Impact of rainfall events on wastewater treatment processes. Graduate Theses and Dissertations, University of South Florida, Scholar Commons, Florida, FL, USA, 5 April 2006. [Google Scholar]
- Cromwell, J.E.; Smith, J.B.; Raucher, R.S. Implications of Climate Change for Urban Water Utilities; Association of Metropolitan Water Agencies: Washington, DC, USA, 2007. [Google Scholar]
- Langeveld, J.; Schilperoort, R.; Weijers, S. Climate change and urban wastewater infrastructure: There is more to explore. J. Hydrol. 2013, 476, 112–119. [Google Scholar] [CrossRef]
- Danas, K.; Kurdi, B.; Stark, M.; Mutlaq, A. Climate change effects on waste water treatment. CEE Jordan Group Presentation, Jordan. 18 September 2012. Available online: https://courses.washington.edu/cejordan/CC%20AND%20WWT.pdf (accessed on 18 March 2019).
- Vo, P.T.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Nguyen, P.D.; Listowski, A.; Wang, X.C. A mini-review on the impacts of climate change on wastewater reclamation and reuse. Sci. Total. Environ. 2014, 494, 9–17. [Google Scholar] [CrossRef]
- Zouboulis, A.; Tolkou, A. Effect of Climate Change in Wastewater Treatment Plants: Reviewing the Problems and Solutions. In Managing Water Resources under Climate Uncertainty; Springer Science and Business Media LLC: Cham, Switzerland, 2014; pp. 197–220. [Google Scholar]
- Cromwell, J.; McGuckin, R. Implications of Climate Change for Adaptation by Wastewater and Stormwater Agencies. Proc. Water Environ. Fed. 2010, 2010, 1887–1915. [Google Scholar] [CrossRef]
- Dasgupta, S.; Wheeler, D.; Huq, M.; Zhang, C. Water pollution abatement by Chinese industry: Cost estimates and policy implications. Appl. Econ. 2001, 33, 547–557. [Google Scholar] [CrossRef]
- Chen, H.W.; Chang, N.B. A comparative analysis of methods to represent uncertainty in estimating the cost of constructing wastewater treatment plants. J. Environ. Manag. 2002, 65, 383–409. [Google Scholar] [CrossRef]
- Yu, F.; Niu, K.Y.; Cao, D.; Wang, J.N. Design for a municipal wastewater treatment charge standard system based on cost accounting. China Environ. Sci. 2011, 31, 1578–1584. [Google Scholar]
- Hernández-Sancho, F.; Lamizana-Diallo, B.; Mateo-Sagasta, J.; Qadir, M. Economic valuation of wastewater: The cost of action and the cost of no action. Nairobi: United Nations Environment Programme (UNEP). 2015. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/7465/-Economic_Valuation_of_Wastewater_The_Cost_of_Action_and_the_Cost_of_No_Action-2015Wastewater_Evaluation_Report_Mail.pdf.pdf?sequence=3&isAllowed=y (accessed on 6 August 2018).
- Jiang, Y.; Hellegers, P. Joint pollution control in the Lake Tai Basin and the stabilities of the cost allocation schemes. J. Environ. Manag. 2016, 184, 504–516. [Google Scholar] [CrossRef]
- Chai, C.; Zhang, D.; Yu, Y.; Feng, Y.; Wong, M.S. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China. Water 2015, 7, 918–938. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Huppes, G.; Heijungs, R.; Ren, N. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: Case study of a cool area of China. J. Clean. Prod. 2015, 94, 278–283. [Google Scholar] [CrossRef]
- Republic of China State Council. Regulations on Drainage and Sewage Treatment in Towns. 2014; (In Chinese). Available online: http://www.gov.cn/flfg/2013-10/16/content_2508291.htm (accessed on 6 August 2018).
- National Bureau of Statistics of China (NBS). China Statistical Yearbook. 2016. Available online: http://data.stats.gov.cn (accessed on 23 October 2018).
- Ministry of Housing and Urban-Rural Development of China (MOHURD). Statistical Report on Urban and Rural Construction. 2017; (In Chinese). Available online: http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/tjxxtjgb/201708/t20170818_232983.html (accessed on 6 August 2018).
- Ministry of Environmental Protection of the People’s Republic of China (MOEP). Environmental Statistics Bulletin. 2014. Available online: http://www.mep.gov.cn/ (accessed on 6 August 2018).
- Jin, L.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, W.; Ngo, H.H.; Guo, W.; Jin, P.; Dzakpasu, M.; Yang, S.; Wang, Q.; Wang, X.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92, 11–22. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China (MOEP). Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant GB18918-2002. 2002. Available online: https://www.ecolex.org/details/legislation/discharge-standard-of-pollutants-for-municipal-wastewater-treatment-plant-national-standard-gb-18918-2002-lex-faoc136765/ (accessed on 6 August 2018).
- Sun, Y.; Chen, Z.; Wu, G.; Wu, Q.; Zhangbin, N.; Niu, Z.; Hu, H.-Y. Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. J. Clean. Prod. 2016, 131, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Dinar, A.; Hellegers, P. Economics of social trade-off: Balancing wastewater treatment cost and ecosystem damage. J. Environ. Manag. 2018, 211, 42–52. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L. Wastewater Engineering: Treatment, Disposal and Reuse; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Harris, I.R.; Jones, P.D.; Osborn, T.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Clim. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Fraas, A.G.; Munley, V.G. Municipal wastewater treatment cost. J. Environ. Econ. Manag. 1984, 11, 28–38. [Google Scholar] [CrossRef]
- Schwarz, G.E.; McConnell, V.D. Local choice and wastewater treatment plant performance. Water Resour. Res. 1993, 29, 1589–1600. [Google Scholar] [CrossRef]
- Fraquelli, G.; Giandrone, R. Reforming the wastewater treatment sector in Italy: Implications of plant size, structure, and scale economies. Water Resour. Res. 2003, 39, 1293. [Google Scholar] [CrossRef]
- Friedler, E.; Pisanty, E. Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making. Water Res. 2006, 40, 3751–3758. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Cost modelling for wastewater treatment processes. Desalination 2011, 268, 1–5. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Molinos-Senante, M.; Hernández-Sancho, F. Comparing the efficiency of wastewater treatment technologies through a DEA metafrontier model. Chem. Eng. J. 2011, 173, 766–772. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Hernandezsancho, F.; Sala-Garrido, R. Comparing the dynamic performance of wastewater treatment systems: A metafrontier Malmquist productivity index approach. J. Environ. Manag. 2015, 161, 309–316. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Sala-Garrido, R.; Lafuente, M. The role of environmental variables on the efficiency of water and sewerage companies: A case study of Chile. Environ. Sci. Pollut. Res. 2015, 22, 10242–10253. [Google Scholar] [CrossRef]
- Sato, N.; Okubo, T.; Onodera, T.; Agrawal, L.K.; Ohashi, A.; Harada, H. Economic evaluation of sewage treatment processes in India. J. Environ. Manag. 2007, 84, 447–460. [Google Scholar] [CrossRef]
- Niu, K.; Wu, J.; Yu, F.; Guo, J. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China. Environ. Sci. Technol. 2016, 50, 12339–12347. [Google Scholar] [CrossRef]
- Tran, Q.K.; Schwabe, K.A.; Jassby, D. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources. Environ. Sci. Technol. 2016, 50, 9390–9399. [Google Scholar] [CrossRef]
- Tran, Q.; Jassby, D.; Schwabe, K.A. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities. Water Res. 2017, 124, 472–481. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D.; Wang, J.; Wang, Q.; Dong, D. Spatial Variation of the Relationship between PM2.5 Concentrations and Meteorological Parameters in China. BioMed Res. Int. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.B. Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. J. R. Stat. Soc. Ser. Stat. Methodol. 1969, 31, 350–371. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, N.; Wu, X.; Fang, H. COD Discharge Limits for Urban Wastewater Treatment Plants in China Based on Statistical Methods. Water 2018, 10, 777. [Google Scholar] [CrossRef] [Green Version]
- Lavee, D. Is the upgrading of wastewater treatment facilities to meet more stringent standards economically justified: The case of Israel. Water Resour. 2014, 41, 564–573. [Google Scholar] [CrossRef]
- Wang, R. Environmental and resource sustainability of Chinese cities: A review of issues, policies, practices and effects. Nat. Resour. Forum 2011, 35, 112–121. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Mendelsohn, R.; Dinar, A.; Huang, J.; Rozelle, S.; Zhang, L. The impact of climate change on China’s agriculture. Agric. Econ. 2009, 40, 323–337. [Google Scholar] [CrossRef]
- Xu, C.H.; Xu, Y. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos. Oceanic Sci. Lett. 2012, 5, 527–533. [Google Scholar]
- Hui, P.; Tang, J.; Wang, S.; Wang, S.; Zong, P.; Dong, X. Climate change projections over China using regional climate models forced by two CMIP5 global models. Part II: Projections of future climate. Int. J. Clim. 2018, 38, e78–e94. [Google Scholar] [CrossRef]
- Bao, Q.; Lin, P.; Zhou, T.; Liu, Y.; Yu, Y.; Wu, G.; He, B.; He, J.; Li, L.; Li, J.; et al. The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2. Adv. Atmos. Sci. 2013, 30, 561–576. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmos. Res. 2016, 178, 521–534. [Google Scholar] [CrossRef]
- Shalizi, Z. Water and urbanization. In China Urbanizes: Consequences, Strategies and Policies; Yusuf, S., Saich, T., Eds.; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Wang, X.-J.; Zhang, J.-Y.; Shahid, S.; Xie, W.; Du, C.-Y.; Shang, X.-C.; Zhang, X. Modeling domestic water demand in Huaihe River Basin of China under climate change and population dynamics. Environ. Dev. Sustain. 2017, 20, 911–924. [Google Scholar] [CrossRef]
- United Nations (UN) Department of Economic and Social Affairs (DESA), Population Division. World Population Prospects. 2017. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 6 August 2018).
- European Union Small and Medium-Sized Enterprise (EUSME) Centre. The Water Sector in China. 2013. Available online: http://www.eusmecentre.org.cn/report/water-sector-china (accessed on 15 November 2018).
- Nordhaus, W.D. A Review of the Stern Review on the Economics of Climate Change. J. Econ. Lit. 2007, 45, 686–702. [Google Scholar] [CrossRef]
- Feinerman, E.; Plessner, Y.; Eshel, D.M.D. Recycled Effluent: Should the Polluter Pay? Am. J. Agric. Econ. 2001, 83, 958–971. [Google Scholar] [CrossRef]
- McConnell, V.D.; Schwarz, G.E. The supply and demand for pollution control: Evidence from wastewater treatment. J. Environ. Econ. Manag. 1992, 23, 54–77. [Google Scholar] [CrossRef]
- Fernandez, L. Estimation of Wastewater Treatment Objectives through Maximum Entropy. J. Environ. Econ. Manag. 1997, 32, 293–308. [Google Scholar] [CrossRef]
- Hernández-Sancho, F.; Sala-Garrido, R. Technical efficiency and cost analysis in wastewater treatment processes: A DEA approach. Desalination 2009, 249, 230–234. [Google Scholar] [CrossRef]
- Hernandezsancho, F.; Molinossenante, M.; Sala-Garrido, R. Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach. Sci. Total. Environ. 2011, 409, 2693–2699. [Google Scholar] [CrossRef]
Variable | Units | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Dependent Variable | |||||
O&M Costs | Million $ | 1.95 | 1.46 | 0.15 | 8.24 |
Explanatory Variables | |||||
Investment | Million $ | 28.75 | 26.37 | 1.86 | 139.41 |
Volume Treated | 104 × m3/day | 6.46 | 6.32 | 0.21 | 40.00 |
Treatment Capacity | 104 × m3/day | 7.54 | 7.04 | 0.60 | 40.00 |
Tenure (years since establishment) | Years | 8.77 | 6.47 | 1.00 | 50.00 |
BOD Influent | mg/L | 169.99 | 89.00 | 17.99 | 480.00 |
BOD Effluent | mg/L | 13.40 | 8.34 | 1.20 | 60.00 |
Treatment Process | Number of WWTPs | Designed Capacity | ||||
---|---|---|---|---|---|---|
Sample (2006) | Reported in [35] | Reported in [36] | Sample (2006) | Reported in [35] | Reported in [36] | |
AAO | 12 | 25 | 31 | 17 | 33 | 21 |
Chemical and Physicochemical | 3 | 1 | 3 | 3 | 2 | 3 |
AO | 6 | 6 | 8 | 4 | 8 | 5 |
Biological Film | 3 | 2 | 4 | 2 | 1 | 6 |
AS | 15 | 9 | 11 | 21 | 4 | 15 |
SBR | 10 | 17 | 10 | 8 | 10 | 11 |
Oxidation Ditch | 40 | 29 | 21 | 35 | 28 | 25 |
Others | 11 | 11 | 12 | 10 | 14 | 14 |
Historical Climate | Observed Weather | ||||
---|---|---|---|---|---|
Units | Mean | Std. Dev. | Mean | Std. Dev. | |
Temperature | |||||
Annual Average | C° | 14.28 | 3.41 | 15.31 | 3.40 |
Intra Annual Variance | (C°)2 | 87.67 | 36.54 | 85.89 | 35.76 |
Precipitation | |||||
Annual Average | mm | 975.78 | 387.05 | 901.32 | 426.39 |
Intra Annual Variance | (mm)2 | 5390.59 | 3746.01 | 4337.57 | 3880.45 |
Variable\Model | A | B | C | D |
---|---|---|---|---|
Investment () | 0.267 (0.068) | 0.159 (0.070) | 0.290 (0.070) | 0.182 (0.072) |
Capacity () | 0.566 (0.166) | 0.714 (0.166) | 0.493 (0.173) | 0.657 (0.170) |
Volume () | −0.095 (0.149) | −0.127 (0.144) | −0.076 (0.150) | −0.115 (0.145) |
Tenure () | 0.079 (0.084) | 0.040 (0.126) | 0.301 (0.149) | 0.221 (0.171) |
Quality Parameters | ||||
BOD Influent () | 0.167 (0.077) | 0.168 (0.079) | 0.168 (0.079) | 0.171 (0.080) |
BOD Effluent () | −0.030 (0.063) | −0.036 (0.065) | −0.03 (0.063) | −0.036 (0.065) |
Climate Indicators | ||||
Hist. Mean Temp. () | 0.091 (0.224) | 0.395 (0.450) | 0.061 (0.224) | 0.451 (0.450) |
Hist. Intra-Ann. Temp. Var. () | 0.376 (0.135) | 0.054 (0.439) | 0.366 (0.135) | 0.306 (0.465) |
Mean Temp. Ratio () | −0.753 (1.445) | 0.538 (3.678) | −0.881 (1.455) | −0.497 (4.094) |
Intra-Ann. Temp Var. Ratio () | 2.190 (0.817) | 3.167 (2.756) | 2.423 (0.836) | 2.052 (2.885) |
Treatment Technologies () | ||||
Chemical and Physicochemical | −0.349 (0.148) | −0.247 (0.174) | −0.362 (0.149) | −0.235 (0.176) |
AAO | −0.156 (0.148) | 0.012 (0.160) | −0.175 (0.153) | −0.001 (0.161) |
AO | −0.314 (0.191) | −0.047 (0.195) | −0.353 (0.192) | −0.077 (0.195) |
Biological Filter | −0.278 (0.240) | −0.208 (0.261) | −0.304 (0.242) | −0.209 (0.262) |
SBR | 0.021 (0.160) | 0.073 (0.173) | 0.016 (0.163) | 0.073 (0.173) |
Oxidation Ditch | −0.122 (0.118) | 0.032 (0.132) | −0.137 (0.125) | 0.024 (0.139) |
Not Specified | −1.292 (0.363) | −1.301 (0.357) | −1.352 (0.370) | −1.290 (0.366) |
Constant Term | −3.778 (1.099) | −2.453 (2.779) | −4.827 (1.332) | −4.412 (3.107) |
Control Vectors | ||||
Province () | No | Yes | No | Yes |
Decade () | No | No | Yes | Yes |
Adjusted R2 | 0.659 | 0.714 | 0.660 | 0.718 |
Moran I | 1.710 | 0.310 | 2.960 | 1.070 |
Variable | Annual Average (C°) | Intra-Annual Variance (C°)2 | ||||
---|---|---|---|---|---|---|
Period and Model | RCP 2.6 | RCP 4.5 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 8.5 |
Base (2006) | 14.32 | 87.25 | ||||
BCC-CSM1 | 14.53 | 14.61 | 14.92 | 88.54 | 92.44 | 87.52 |
CanESM2 | 16.14 | 16.11 | 16.36 | 86.01 | 87.27 | 85.49 |
GISS-E2-R | 15.22 | 15.37 | 15.69 | 60.83 | 60.95 | 58.61 |
MIROC5 | 16.35 | 16.37 | 16.61 | 95.39 | 96.27 | 95.31 |
MIROC-ESM | 16.33 | 16.13 | 16.51 | 90.15 | 91.56 | 90.67 |
MIROC-ESM-CHEM | 16.47 | 16.03 | 16.55 | 94.07 | 94.23 | 92.96 |
MPI-ESM-LR | 15.19 | 15.24 | 15.35 | 78.48 | 80.12 | 81.63 |
Average (2020-2046) | 15.75 | 15.69 | 16.00 | 84.78 | 86.12 | 84.60 |
BCC-CSM1 | 14.77 | 15.18 | 16.10 | 90.35 | 89.96 | 90.20 |
CanESM2 | 16.42 | 16.92 | 17.85 | 85.39 | 88.11 | 88.27 |
GISS-E2-R | 15.17 | 15.83 | 16.62 | 59.47 | 59.43 | 59.21 |
MIROC5 | 17.09 | 17.43 | 18.27 | 97.17 | 95.26 | 95.49 |
MIROC-ESM | 16.72 | 17.45 | 18.55 | 93.60 | 93.27 | 91.79 |
MIROC-ESM-CHEM | 16.72 | 17.21 | 18.42 | 92.25 | 95.18 | 91.24 |
MPI-ESM-LR | 15.16 | 15.69 | 16.84 | 78.77 | 79.91 | 76.92 |
Average (2047–2073) | 16.01 | 16.53 | 17.52 | 85.29 | 85.87 | 84.73 |
BCC-CSM1 | 14.63 | 15.44 | 17.57 | 91.31 | 89.68 | 93.77 |
CanESM2 | 16.29 | 17.37 | 19.56 | 87.49 | 86.78 | 91.73 |
GISS-E2-R | 14.92 | 15.82 | 17.73 | 60.06 | 62.03 | 57.37 |
MIROC5 | 17.15 | 17.89 | 19.66 | 96.45 | 97.03 | 95.31 |
MIROC-ESM | 16.85 | 17.80 | 20.78 | 94.83 | 94.73 | 90.92 |
MIROC-ESM-CHEM | 16.62 | 17.69 | 20.74 | 97.04 | 94.32 | 91.25 |
MPI-ESM-LR | 14.98 | 16.04 | 18.38 | 78.65 | 77.38 | 77.71 |
Average (2074–2100) | 15.92 | 16.86 | 19.20 | 86.55 | 85.99 | 85.44 |
Variables | Annual O&M Costs (Million $) | Per Unit of Wastewater Treated O&M Cost ($/m3) | |||||||
---|---|---|---|---|---|---|---|---|---|
Entire Sample (θS) | Average Plant (θP) | Average Plant (μP) | |||||||
R1 | R2 | R3 | R1 | R2 | R3 | R1 | R2 | R3 | |
Base | 302.031 | 1.853 | 0.106 | ||||||
G1 | 329.362 | 358.274 | 339.455 | 2.021 | 2.198 | 2.083 | 0.143 | 0.155 | 0.147 |
G2 | 281.974 | 300.643 | 305.689 | 1.730 | 1.844 | 1.875 | 0.128 | 0.137 | 0.141 |
G3 | 81.056 | 82.476 | 75.737 | 0.497 | 0.506 | 0.465 | 0.029 | 0.030 | 0.027 |
G4 | 349.028 | 350.360 | 351.665 | 2.141 | 2.149 | 2.157 | 0.127 | 0.128 | 0.129 |
G5 | 313.543 | 323.116 | 315.857 | 1.924 | 1.982 | 1.938 | 0.133 | 0.137 | 0.131 |
G6 | 333.101 | 339.844 | 327.530 | 2.044 | 2.085 | 2.009 | 0.135 | 0.138 | 0.132 |
G7 | 176.581 | 186.171 | 194.034 | 1.083 | 1.142 | 1.190 | 0.069 | 0.072 | 0.076 |
Variables | Annual O&M Costs (Million $) | Per Unit of Wastewater Treated O&M Cost ($/m3) | |||||
---|---|---|---|---|---|---|---|
Entire Sample (θS) | Average Plant (θP) | Cheapest Plant | Most Expensive Plant | Average Plant (μP) | Cheapest Plant | Most Expensive Plant | |
Sim2–Sim3 | 36.999 | 0.227 | 0.025 | 1.287 | 0.015 | 0.002 | 0.057 |
Sim1–Sim3 | 80.032 | 0.491 | −0.006 | 4.585 | 0.044 | −0.003 | 1.336 |
Ratio (percent) | 46 | 46 | −407 | 28 | 33 | −94 | 4 |
Variable | Annual O&M Costs for an Average Plant (θP) | Per Unit of Wastewater Treated O&M Costs in an Average Plant (μP) | ||||
---|---|---|---|---|---|---|
GCM/RCP | R1 | R2 | R3 | R1 | R2 | R3 |
G1 | 27 | 23 | 26 | 19 | 17 | 19 |
G2 | 41 | 34 | 33 | 25 | 21 | 20 |
G3 | -35 | −36 | −34 | −41 | −41 | -39 |
G4 | 24 | 24 | 24 | 25 | 24 | 24 |
G5 | 31 | 29 | 30 | 22 | 21 | 23 |
G6 | 27 | 25 | 28 | 22 | 21 | 23 |
G7 | −306 | −1496 | 840 | 665 | 266 | 165 |
Variable | Annual O&M Costs for an Average Plant (θP) | Per Unit of Wastewater Treated O&M Costs in an Average Plant (μP) | ||||||
---|---|---|---|---|---|---|---|---|
Wastewater Volume/Policy Scenario | P0 | P1 | P2 | P3 | P0 | P1 | P2 | P3 |
V0 | −30 | −21 | −27 | −29 | 54 | 56 | 54 | 54 |
V1 | 29 | 37 | 33 | 30 | 107 | 122 | 110 | 108 |
V2 | −7 | −1 | −5 | −6 | 63 | 66 | 64 | 63 |
V3 | −28 | −20 | −26 | −28 | 55 | 57 | 56 | 56 |
V4 | −55 | −43 | −51 | −53 | 50 | 51 | 50 | 50 |
V5 | −23 | −16 | −21 | −23 | 52 | 53 | 52 | 52 |
V6 | −128 | −98 | −120 | −125 | 45 | 46 | 45 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reznik, A.; Jiang, Y.; Dinar, A. The Impacts of Climate Change on Wastewater Treatment Costs: Evidence from the Wastewater Sector in China. Water 2020, 12, 3272. https://doi.org/10.3390/w12113272
Reznik A, Jiang Y, Dinar A. The Impacts of Climate Change on Wastewater Treatment Costs: Evidence from the Wastewater Sector in China. Water. 2020; 12(11):3272. https://doi.org/10.3390/w12113272
Chicago/Turabian StyleReznik, Ami, Yu Jiang, and Ariel Dinar. 2020. "The Impacts of Climate Change on Wastewater Treatment Costs: Evidence from the Wastewater Sector in China" Water 12, no. 11: 3272. https://doi.org/10.3390/w12113272
APA StyleReznik, A., Jiang, Y., & Dinar, A. (2020). The Impacts of Climate Change on Wastewater Treatment Costs: Evidence from the Wastewater Sector in China. Water, 12(11), 3272. https://doi.org/10.3390/w12113272