Using the Turnover Time Index to Identify Potential Strategic Groundwater Resources to Manage Droughts within Continental Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Materials: Description of the Study Area and the Available Information
2.2.1. Location, Geological Context and Historical Climatic Data
2.2.2. Estimated Future Climatic Data
2.2.3. Potential GW Storage under the Surface Connection
2.2.4. Net GW Recharge: Historical and Future Scenarios
3. Results and Discussion
3.1. The T Index in Continental Spain: Historical and Future Scenarios
3.2. Influence S and R on the T Index for Different Lythologies
3.3. Hypothesis Assumed and Limitations of the Method (Recharge and Total Storage Uncertainty)
- -
- -
- We assume that the mean yearly long term E assessment provided by the non-global Turc’s model [43,44], whose results depend on mean annual Ta and P, is good enough for this preliminary assessment. Due to its simplicity and efficiency this approach has been extensively applied in research works in which preliminary E assessment for historical and/or future scenarios is included [33,53]. In spite of this, more accurate assessments of groundwater resource will require, in addition to the non-global E approach, corrections by using global models for E [54] or an external calibration by using well-suited recharge functions [55]. This is especially interesting in the Spanish drylands, where E is typically close to P [53,54]. In this work we use the second option, i.e., the Turc formulation. and the “effective recharge coefficients” deduced from a previous calibrated recharge function provided by Alcalá and Custodio [31,32].
- -
- The “effective recharge coefficients” (C) are calibrated from the R values derived by Alcalá and Custodio, [31,32]. They used a chloride mass balance method whose accuracy is similar to that obtained when global models for E are used for recharge purposes [55]. These values are available at a spatial resolution of 10 km x 10 km grid, and therefore the R model will also be at this scale. We assume that the future impacts of potential climatic scenarios on R can be obtained by propagating future local scenarios with the R model previously calibrated. Therefore, this assumes that the effective recharge coefficient remains invariant in simulating future conditions.
- -
- The analyses of future potential climatic scenarios do not include the simulation of any future LULC scenarios and/or management scenarios of the water resources system. We only analyze potential impacts on T, and, therefore, on R, due to climate drivers, assuming that, in the future, the LULC and management will allow the maintenance of long term mean natural reserves. Under this assumption, the proposed method will be useful in the future to identify strategic resources to manage droughts. In the literature we found several research works in which the potential future impacts on aquifers are analyzed taking into account only climate drivers (Pulido-Velazquez et al., 2018; Pardo-Iguzquiza et al., 2019). The development of additional research works will be needed to study specific LULC and management issues (Pulido-Velazquez et al., 2018).
- -
- -
- The final scenarios employed to study potential impacts on R and T have been defined by an equi-feasible ensemble of local projections, which produce more robust and representative projections than those based on a single model [36].
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
S | Groundwater storage |
R | Net groundwater recharge |
T | Natural mean groundwater turnover time |
GW | Groundwater |
WFD | European Water Framework Directive |
E | Actual evapotranspiration |
P | Precipitation |
Ta | Temperature |
Q | Net groundwater discharge |
U | Groundwater pumping |
RC | Recharge coefficient or P-to-R ratio |
C | Effective recharge coefficient |
References
- Hayes, M.J.; Svoboda, M.; Wall, N.A.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Blenkinsop, S.; Fowler, H.J. Changes in drought characteristics for Europe projected by the PRUDENCE regional climate models. Int. J. Climatol. 2007, 27, 1595–1610. [Google Scholar] [CrossRef]
- Collados-Lara, A.-J.; Pulido-Velazquez, D.; Pardo-Igúzquiza, E. An Integrated Statistical Method to Generate Potential Future Climate Scenarios to Analyse Droughts. Water 2018, 10, 1224. [Google Scholar] [CrossRef] [Green Version]
- LeDuc, C.; Pulido-Bosch, A.; Remini, B. Anthropization of groundwater resources in the Mediterranean region: Processes and challenges. Hydrogeol. J. 2017, 25, 1529–1547. [Google Scholar] [CrossRef]
- Baena-Ruiz, L.; Pulido-Velazquez, D. A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale. Water 2020, 12, 2971. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; García-Aróstegui, J.L.; Molina, J.-L.; Pulido-Velazquez, M. Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? Hydrol. Process. 2014, 29, 828–844. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Besbes, M.; Chahed, J.; Hamdane, A. Sécurité Hydrique de la Tunisie: Gérer l’Eau en Conditions de Pénurie [Water Security of Tunisia: Managing Water in Scarcity Conditions]; L’Harmattan: Paris, France, 2014. [Google Scholar]
- Custodio, E.; Andreu-Rodes, J.M.; Aragón, R.; Estrela, T.; Ferrer, J.; García-Aróstegui, J.L.; Manzano, M.; Rodríguez-Hernández, L.; Sahuquillo, A.; Del Villar, A. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Sci. Total. Environ. 2016, 559, 302–316. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.D.; Bakker, M.; Post, V.E.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Llamas, M.R.; Garrido, A. Lessons from intensive groundwater use in Spain: Economic and social benefits and conflicts. In The Agricultural Groundwater Revolution: Opportunities and Threats to Development; CABI Publishing: Wallingford, UK, 2009; pp. 266–295. [Google Scholar]
- Water Framework Directive (WFD). Directiva 2000/60/CE del Parlamento Europeo y del Consejo de 23 de Octubre de 2000. Diario Oficial de las Comunidades Europeas de 2212/2000. L 327/1–327/32; Water Framework Directive: Brussel, Belgium, 2000. [Google Scholar]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Krogulec, E. Intrinsic and Specific Vulnerability of Groundwater in a River Valley—Assessment, Verification and Analysis of Uncertainty. J. Earth Sci. Clim. Chang. 2013, 4. [Google Scholar] [CrossRef]
- Gogu, R.C.; Dassargues, A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Earth Sci. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Focazio, M.J.; Reilly, T.E.; Rupert, M.G.; Helsel, D.R. Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers. In Circular; US Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- Aller, L.; Bennet, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeological Settings; EPA/600/2- 543 87/035; US Environmental Protection Agency: Ada, OK, USA, 1987; p. 641.
- Van Stempvoort, D.; Ewert, L.; Wassenaar, L. Aquifer vulnerability index: A GIS 643 Compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Civita, M.; De Maio, M. Assessing and mapping groundwater vulnerability to contamination: The Italian “combined” approach. Geofis. Int. 2004, 43, 513–532. [Google Scholar] [CrossRef] [Green Version]
- Busico, G.; Kazakis, N.; Cuoco, E.; Colombani, N.; Tedesco, D.; Voudouris, K.; Mastrocicco, M. A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Res. 2020, 171. [Google Scholar] [CrossRef]
- Maloszewski, P.; Zuber, A. Determinig the turnover time of GROUNDWATER systems with the aid of environmental tracers, I. Models and their applicability. J. Hydrol. 1982, 57, 207–231. [Google Scholar] [CrossRef]
- Chambers, L.A.; Gooddy, D.C.; Binley, A.M. Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of GROUNDWATER residence time: A review. Geosci Front. 2018, 10, 1643–1652. [Google Scholar] [CrossRef]
- Sanford, W.E. Calibration of models using groundwater age. Hydrogeol. J. 2011, 19, 13–16. [Google Scholar] [CrossRef]
- Jurgens, B.; Böhlke, J.K.; Kauffman, L.; Belitz, K.; Esser, B. A partial exponential lumped parameter model to evaluate GROUNDWATER age distributions and nitrate trends in long-screened wells. J. Hydrol. 2016, 543, 109–126. [Google Scholar] [CrossRef]
- Eberts, S.M.; Böhlke, J.K.; Kauffman, L.J.; Jurgens, B.C. Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol. J. 2012, 20, 263–282. [Google Scholar] [CrossRef]
- Skaugen, T.; Astrup, M.; Roald, L.A.; Førland, E. Scenarios of extreme daily precipitation for Norway underclimate change. Hydrol. Res. 2004, 35, 1–13. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Renau-Pruñonosa, A.; Llopis-Albert, C.; Morell, I.; Collados-Lara, A.J.; Senent-Aparicio, J.; Baena-Ruiz, L. Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers. A new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer. Hydrol. Earth Syst. Sci. 2018, 22, 3053–3074. [Google Scholar] [CrossRef] [Green Version]
- Pulido-Velazquez, D.; Collados-Lara, A.-J.; Alcalá, F.J. Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain. J. Hydrol. 2018, 567, 803–819. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Custodio, E. Spatial average aquifer recharge through atmospheric chloride mass balance and its uncertainty in continental Spain. Hydrol. Process. 2014, 28, 218–236. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Custodio, E. Natural uncertainty of spatial average aquifer recharge through atmospheric chloride mass balance in continental Spain. J. Hydrol. 2015, 524, 642–661. [Google Scholar] [CrossRef]
- Collados-Lara, A.-J.; Pulido-Velazquez, D.; Pardo-Igúzquiza, E. A Statistical Tool to Generate Potential Future Climate Scenarios for Hydrology Applications. Sci. Program. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Hundecha, Y.; Lawrence, D.; Madsen, H.; Willems, P.; Martinkova, M.; Vormoor, K.; Bürger, G.; Hanel, M.; Kriauˇciuniene, J.; et al. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 1827–1847. [Google Scholar] [CrossRef] [Green Version]
- Collados-Lara, A.J.; Pulido-Velazquez, D.; Mateos, R.M.; Ezquerro, P. Potential Impacts of Future Climate Change Scenarios on Ground Subsidence. Water 2020, 12, 219. [Google Scholar] [CrossRef] [Green Version]
- Agencia Estatal de Meteorología (AEMET). Generación de Escenarios Regionalizados de Cambio Climático para España; Agencia Estatal de Meteorología, Mto, Medio Ambiente, Medio Rural y Marino: Madrid, Spain, 2009.
- IGME. Groundwater in Spain: Synthetic Study; ISBN 84-7840-039-7. Technical Report; Ministry of Industry and Energy of Spain: Madrid, Spain, 1993; p. 591. (In Spanish)
- Herrera, S.; Fernández, J.; Gutiérrez, J.M. Update of the Spain02 Gridded Observational Dataset for Euro-CORDEX evaluation: Assessing the Effect of the Interpolation Methodology. Int. J. Climatol. 2016, 36, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.; Pozo-Vazquez, D.; Osborn, T.; Castro-Díez, Y.; Gámiz-Fortis, S.; Esteban-Parra, M.-J. North Atlantic Oscillation Influence on Precipitation, River Flow and Water Resources in the Iberian Peninsula. Int. J. Climatol. 2004, 24, 925–944. [Google Scholar] [CrossRef]
- Martín-Vide, J.; López-Bustins, J.A. The Western Mediterranean Oscillation and Rainfall in the Iberian Peninsula. Int. J. Climatol. 2006, 26, 1455–1475. [Google Scholar] [CrossRef]
- MIMAM. White Book of Eater in Spain; Ministry of the Environment, State Secretary of Waters and Coast, General Directorate of Hydraulic Works and Water Quality: Madrid, Spain, 2000; p. 637, (In Spanish). Available online: http://www.cedex.es/CEDEX/LANG_CASTELLANO/ORGANISMO/CENTYLAB/CEH/Documentos_Descargas/LB_LibroBlancoAgua.htm (accessed on 20 November 2020).
- CORDEX PROJECT. The Coordinated Regional Climate Downscaling Experiment CORDEX. Program Sponsored by World Climate Research Program (WCRP). 2013. Available online: http://www.cordex.org/ (accessed on 8 September 2018).
- Turc, L. Water balance of soils: Relationship between precipitation, evapotranspiration and runoff. Ann. Agron. 1954, 5, 491–569. (In French) [Google Scholar]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron. 1961, 12, 13–49. (In French) [Google Scholar]
- Pardo-Igúzquiza, E.; Collados-Lara, A.J.; Pulido-Velazquez, D. Potential future impact of climate change on recharge in the Sierra de las Nieves (southern Spain) high-relief karst aquifer using regional climate models and statistical corrections. Environ. Earth Sci. 2019, 78, 598. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Del Barrio, G.; Sanjuán, M.E.; Alcalá, F.J.; Martínez-Vicente, S.; Ruiz, A.; Puigdefábregas, J. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Sci. Total Environ. 2016, 563–564, 169–178. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Alcalá, F.J.; Martínez, S. SAT: A Software for Assessing the Risk of Desertification in Spain. Sci. Program. 2020, 2020, 7563928. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Sahuquillo, A.; Andreu, J.; Pulido-Velazquez, M. An efficient conceptual model to simulate surface water body-aquifer interaction in Conjunctive Use Management Models. Water Resour. Res. 2007, 43, W07407. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Sahuquillo, A.; Andreu, J.; Pulido-Velazquez, M. A general methodology to simulate GROUNDWATER flow of unconfined aquifers with a reduced computational cost. J. Hydrol. 2007, 338, 42–56. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Sahuquillo, A.; Andreu, J. A two-step explicit solution of the Boussinesq equation for efficient simulation of unconfined aquifers in conjunctive-use models. Water Resour. Res. 2006, 42, W05423. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Pulido-Velazquez, D. Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrol. Process 2015, 29, 2052–2064. [Google Scholar] [CrossRef]
- Quintana-Seguí, P.; Turco, M.; Herrera, S.; Miguez-Macho, G. Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim. Hydrol. Earth Syst. Sci. 2017, 21, 2187–2201. [Google Scholar] [CrossRef] [Green Version]
- Were, A.; Villagarcía, L.; Domingo, F.; Alados-Arboledas, L.; Puigdefábregas, J. Analysis of effective resistance calculation methods and their effect on modelling evapotranspiration in two different patches of vegetation in semi-arid SE Spain. Hydrol. Earth Syst. Sci. 2007, 11, 1529–1542. [Google Scholar] [CrossRef] [Green Version]
- España, S.; Alcalá, F.J.; Vallejos, Á.; Pulido-Bosch, A. A GIS tool for modelling annual diffuse infiltration on a plot scale. Comput. Geosci. 2013, 54, 318–325. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Cantón, Y.; Contreras, S.; Were, A.; Serrano-Ortiz, P.; Puigdefábregas, J.; Solé-Benet, A.; Custodio, E.; Domingo, F. Diffuse and concentrated recharge evaluation using physical and tracer techniques: Results from a semiarid carbonate massif aquifer in southeast Spain. Environ. Earth Sci. 2011, 62, 541–557. [Google Scholar] [CrossRef] [Green Version]
GCMs | CNRM-CM5 | EC-EARTH | MPI-ESM-LR | IPSL-CM5A-MR | |
---|---|---|---|---|---|
RCMs | |||||
CCLM4-8-17 | X | X | X | ||
RCA4 | X | X | X | ||
HIRHAM5 | X | ||||
RACMO22E | X | ||||
WRF331F | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido-Velazquez, D.; Romero, J.; Collados-Lara, A.-J.; Alcalá, F.J.; Fernández-Chacón, F.; Baena-Ruiz, L. Using the Turnover Time Index to Identify Potential Strategic Groundwater Resources to Manage Droughts within Continental Spain. Water 2020, 12, 3281. https://doi.org/10.3390/w12113281
Pulido-Velazquez D, Romero J, Collados-Lara A-J, Alcalá FJ, Fernández-Chacón F, Baena-Ruiz L. Using the Turnover Time Index to Identify Potential Strategic Groundwater Resources to Manage Droughts within Continental Spain. Water. 2020; 12(11):3281. https://doi.org/10.3390/w12113281
Chicago/Turabian StylePulido-Velazquez, David, Javier Romero, Antonio-Juan Collados-Lara, Francisco J. Alcalá, Francisca Fernández-Chacón, and Leticia Baena-Ruiz. 2020. "Using the Turnover Time Index to Identify Potential Strategic Groundwater Resources to Manage Droughts within Continental Spain" Water 12, no. 11: 3281. https://doi.org/10.3390/w12113281
APA StylePulido-Velazquez, D., Romero, J., Collados-Lara, A. -J., Alcalá, F. J., Fernández-Chacón, F., & Baena-Ruiz, L. (2020). Using the Turnover Time Index to Identify Potential Strategic Groundwater Resources to Manage Droughts within Continental Spain. Water, 12(11), 3281. https://doi.org/10.3390/w12113281