The Water Footprint of the United States
Abstract
:1. Introduction
2. The Water Footprint of Production
3. Sub-National Virtual Water Flows
4. The Water Footprint of Consumption
5. Metrics
6. Future Research Directions
“The interest in the water footprint is rooted in the recognition that human impacts on freshwater systems can ultimately be linked to human consumption, and that issues like water shortages and pollution can be better understood and addressed by considering production and supply chains as a whole.”—Arjen Y. Hoekstra
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AYH | Arjen Y. Hoekstra |
WF | Water Footprint |
VWT | Virtual Water Trade |
VWF | Virtual Water Flow |
VWS | Virtual Water Storage |
CFS | Commodity Flow Survey |
FAF | Freight Analysis Framework |
MRIO | Multi-Region Input-Output |
MSA | Metropolitan Statistical Area |
FEW | Food-Energy-Water |
USGS | US Geological Survey |
References
- Hoekstra, A.Y.; Hung, P. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2002. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; Wiley-Blackwell: Hoboken, NJ, USA, 2008; p. 220. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marston, L.; Ao, Y.; Konar, M.; Mekonnen, M.M.; Hoekstra, A.Y. High-resolution water footprints of production of the United States. Water Resour. Res. 2018, 54, 2288–2316. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Water for food: The global virtual water trade network. Water Resour. Res. 2011, 47, W05520. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Allenby, B.R.; Crittenden, J.C. Interconnectedness and resilience of the U.S. economy. Adv. Complex Syst. 2011, 14, 649–672. [Google Scholar] [CrossRef]
- Devineni, N.; Lall, U.; Etienne, E.; Shi, D.; Xi, C. America’s water risk: Current demand and climate variability. Geophys. Res. Lett. 2015, 42, 2285–2293. [Google Scholar] [CrossRef]
- Dang, Q.; Konar, M. Trade Openness and Domestic Water Use. Water Resour. Res. 2018, 54, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Veettil, A.V.; Mishra, A. Water security assessment using blue and green water footprint concepts. J. Hydrol. 2016, 542, 589–602. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A. Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. J. Environ. Manag. 2018, 228, 346–362. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A. Water security assessment for the contiguous United States using water footprint concepts. Geophys. Res. Lett. 2020, 45, e2020GL087061. [Google Scholar] [CrossRef]
- Dieter, C.; Maupin, M.; Caldwell, R.; Harris, M.; Ivahnenko, T.; Lovelace, J.; Barber, N.; Linsey, K. Estimated use of water in the United States in 2015. In U.S. Geological Survey Circular 1441; U.S. Geological Survey: Reston, VA, USA, 2018; p. 65. [Google Scholar] [CrossRef]
- Perrone, D.; Hornberger, G.; van Vliet, O.; van der Velde, M. A review of the United States’ past and projected water use. J. Am. Water Resour. Assoc. 2015, 51, 1183–1191. [Google Scholar] [CrossRef]
- Debaere, P.; Kurzendoerfer, A. Decomposing US Water Withdrawal since 1950. JAERE 2017, 4, 155–196. [Google Scholar] [CrossRef]
- Avelino, A.F.T.; Dall’erba, S. What Factors Drive the Changes in Water Withdrawals in the U.S. Agriculture and Food Manufacturing Industries between 1995 and 2010? Environ. Sci. Technol. 2020, 54, 10421–10434. [Google Scholar] [CrossRef] [PubMed]
- Worland, S.C.; Steinschneider, S.; Hornberger, G.M. Drivers of Variability in Public-Supply Water Use Across the Contiguous United States. Water Resour. Res. 2018, 54, 1868–1889. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 2016, 66, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: Abingdon, UK, 2011. [Google Scholar]
- Grubert, E.; Sanders, K.T. Water Use in the United States Energy System: A National Assessment and Unit Process Inventory of Water Consumption and Withdrawals. Environ. Sci. Technol. 2018, 52, 6695–6703. [Google Scholar] [CrossRef]
- Richter, B.D.; Bartak, D.; Caldwell, P.; Davis, K.F.; Debaere, P.; Hoekstra, A.Y.; Li, T.; Marston, L.; McManamay, R.; Mekonnen, M.M.; et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 2020, 3, 319–328. [Google Scholar] [CrossRef]
- Gumidyala, S.; Ruess, P.J.; Konar, M.; Marston, L.; Dalin, C.; Wada, Y. Groundwater depletion embedded in domestic transfers and international exports of the United States. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.; Mubako, S.; Ruddell, B.L. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin. Earth’s Future 2016, 4, 282–297. [Google Scholar] [CrossRef] [Green Version]
- Marston, L.; Konar, M.; Cai, X.; Troy, T.J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8561–8566. [Google Scholar] [CrossRef] [Green Version]
- Rushforth, R.R.; Ruddell, B.L. A spatially detailed blue water footprint of the United States economy. Hydrol. Earth Syst. Sci. 2018, 22, 3007. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Hoekstra, A.Y. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Front. Agric. Sci. Eng. 2017, 4, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y. Water scarcity alleviation through water footprint reduction in agriculture: the effect of soil mulching and drip irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Mubako, S.T.; Lant, C.L. Agricultural virtual water trade and water footprint of US states. Ann. Assoc. Am. Geogr. 2013, 103, 385–396. [Google Scholar] [CrossRef]
- Fulton, J.; Norton, M.; Shillingb, F. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2019, 96, 711–717. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Neale, C.M.; Ray, C.; Erickson, G.E.; Hoekstra, A.Y. Water productivity in meat and milk production in the US from 1960 to 2016. Environ. Int. 2019, 132, 105084. [Google Scholar] [CrossRef] [PubMed]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef] [Green Version]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wu, M. A First Estimation of County-Based Green Water Availability and Its Implications for Agriculture and Bioenergy Production in the United States. Water 2018, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wu, M.; Ha, M. A county-level estimation of renewable surface water and groundwater availability associated with potential large-scale bioenergy feedstock production scenarios in the United States. GCB Bioenergy 2019, 11, 606–622. [Google Scholar] [CrossRef] [Green Version]
- Marston, L.; Konar, M. Drought impacts to water footprints and virtual water transfers of the Central Valley of California. Water Resour. Res. 2017, 53, 5756–5773. [Google Scholar] [CrossRef]
- Fulton, J.; Cooley, H.; Gleick, P.H. Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California. Water Resour. Manag. 2014, 28, 3637–3649. [Google Scholar] [CrossRef]
- Davis, K.F.; Seveso, A.; Rulli, M.C.; D’Odorico, P. Water Savings of Crop Redistribution in the United States. Water 2017, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Faus, R.; Powers, S.E.; Burken, J.G.; Alvarez, P.J. The water footprint of biofuels: A drink or drive issue? Environ. Sci. Technol. 2009, 43, 3005–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L. Understanding and managing the food-energy-water nexus–opportunities for water resources research. Adv. Water Resour. 2018, 111, 259–273. [Google Scholar] [CrossRef]
- Chiu, Y.W.; Wu, M. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways. Environ. Sci. Technol. 2012, 46, 9155–9162. [Google Scholar] [CrossRef] [Green Version]
- Scown, C.D.; Horvath, A.; McKone, T.E. Water Footprint of U.S. Transportation Fuels. Environ. Sci. Technol. 2011, 45, 2541–2553. [Google Scholar] [CrossRef]
- Kondash, A.J.; Lauer, N.E.; Vengoshn, A. The intensification of the water footprint of hydraulic fracturing. Sci. Adv. 2018, 4, eaar5982. [Google Scholar] [CrossRef] [Green Version]
- Kondash, A.J.; Vengoshn, A. Water Footprint of Hydraulic Fracturing. Environ. Sci. Technol. Lett. 2015, 2, 276–280. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.C.; Male, F.; Hove, M. Managing the Increasing Water Footprint of Hydraulic Fracturing in the Bakken Play, United States. Environ. Sci. Technol. 2016, 50, 10273–10281. [Google Scholar] [CrossRef]
- Chini, C.M.; Logan, L.H.; Stillwell, A.S. Grey Water Footprints of US Thermoelectric Power Plants from 2010–2016. Adv. Water Resour. 2020, 145, 103733. [Google Scholar] [CrossRef]
- Hogeboom, R.J.; Knook, L.; Hoekstra, A.Y. The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv. Water Resour. 2018, 113, 285–294. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A.Y.; Thompson, S. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 2012, 16, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Grubert, E.A. Water consumption from hydroelectricity in the United States. Adv. Water Resour. 2016, 96, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Siddik, M.A.B.; Chini, C.M.; Marston, L. Water and Carbon Footprints of Electricity Are Sensitive to Geographical Attribution Methods. Environ. Sci. Technol. 2020, 54, 7533–7541. [Google Scholar] [CrossRef] [PubMed]
- Ahams, I.C.; Paterson, W.; Garcia, S.; Rushforth, R.; Ruddell, B.L.; Mejia, A. Water footprint of 65 mid- to large-sized U.S. cities and their metropolitan areas. J. Am. Water Resour. Assoc. 2017, 53, 1147–1163. [Google Scholar] [CrossRef]
- Moore, B.C.; Coleman, A.M.; Wigmosta, M.S.; Skaggs, R.L.; Venteris, E.R. A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resour. Manag. 2015, 29, 5185–5200. [Google Scholar] [CrossRef]
- Mubako, S.; Lahiri, S.; Lant, C. Input–output analysis of virtual water transfers: Case study of California and Illinois. Ecol. Econ. 2013, 93, 230–238. [Google Scholar] [CrossRef]
- Chini, C.M.; Konar, M.; Stillwell, A.S. Direct and indirect urban water footprints of the United States. Water Resour. Res. 2017, 53, 316–327. [Google Scholar] [CrossRef]
- Marston, L.T.; Lamsal, G.; Ancona, Z.H.; Caldwell, P.; Richter, B.D.; Ruddell, B.L.; Rushforth, R.R.; Davis, K.F. Reducing water scarcity by improving water productivity in the United States. Environ. Res. Lett. 2020, 15, 094033. [Google Scholar] [CrossRef]
- Garcia, S.; Rushforth, R.; Ruddell, B.L.; Mejia, A. Full domestic supply chains of blue virtual water flows estimated for major US cities. Water Resour. Res. 2020, 56, e2019WR026190. [Google Scholar] [CrossRef]
- Bae, J.; Dall’Erba, S. Crop production, export of virtual water and water-saving strategies in Arizona. Ecol. Econ. 2018, 146, 148–156. [Google Scholar] [CrossRef]
- Dang, Q.; Lin, X.; Konar, M. Agricultural virtual water flows within the United States. Water Resour. Res. 2015, 51, 973–986. [Google Scholar] [CrossRef]
- Chini, C.M.; Djehdian, L.A.; Lubega, W.N.; Stillwell, A.S. Virtual water transfers of the US electric grid. Nat. Energy 2018, 3, 1115–1123. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; van der Meer, T.H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauman, K.A.; Goodkind, A.L.; Kim, T.; Pelton, R.; Schmitt, J.; Smith, T. Unique water scarcity footprints and water risks in US meat and ethanol supply chains identified via subnational commodity flows. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Mahjabin, T.; Mejia, A.; Blumsack, S.; Grady, C. Integrating embedded resources and network analysis to understand food-energy-water nexus in the US. Sci. Total Environ. 2020, 709, 136153. [Google Scholar] [CrossRef]
- Vora, N.; Shah, A.; Bilec, M.M.; Khanna, V. Food–energy–water nexus: Quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustain. Chem. Eng. 2017, 5, 2119–2128. [Google Scholar] [CrossRef]
- Garcia, S.; Mejia, A. Characterizing and modeling subnational virtual water networks of US agricultural and industrial commodity flows. Adv. Water Resour. 2019, 130, 314–324. [Google Scholar] [CrossRef]
- Djehdian, L.A.; Chini, C.M.; Marston, L.; Konar, M.; Stillwell, A.S. Exposure of urban food–energy–water (FEW) systems to water scarcity. Sustain. Cities Soc. 2019, 50, 101621. [Google Scholar] [CrossRef]
- Rushforth, R.R.; Ruddell, B.L. The vulnerability and resilience of a city’s water footprint: The case of Flagstaff, Arizona, USA. Water Resour. Res. 2016, 52, 2698–2714. [Google Scholar] [CrossRef] [Green Version]
- Konar, M.; Hussein, Z.; Hanasaki, N.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Virtual water trade flows and savings under climate change. Hydrol. Earth Syst. Sci. 2013, 17, 3219–3234. [Google Scholar] [CrossRef] [Green Version]
- Konar, M.; Reimer, J.; Hussein, Z.; Hanasaki, N. The water footprint of staple crop trade under climate and policy scenarios. Environ. Res. Lett. 2016, 11, 035006. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. Virtual Water: An Introduction, Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade; Value of Water Research Report Series; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2003. [Google Scholar]
- Ruess, P.J.; Konar, M. Grain and virtual water storage capacity in the United States. Water Resour. Res. 2019, 55, 3960–3975. [Google Scholar] [CrossRef]
- Mahjabin, T.; Garcia, S.; Grady, C.; Mejia, A. Large cities get more for less: Water footprint efficiency across the US. PLoS ONE 2018, 13, e0202301. [Google Scholar] [CrossRef] [PubMed]
- Luck, M.A.; Jenerette, G.D.; Wu, J.; Grimm, N.B. The Urban Funnel Model and the Spatially Heterogeneous Ecological Footprint. Ecosystems 2001, 4, 782–796. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Wu, W.; Goldsmith, S.; Marussich, W.A.; Roach, W.J. Contrasting water footprints of cities in China and the United States. Ecol. Econ. 2006, 57, 346–358. [Google Scholar] [CrossRef]
- Sabo, J.L.; Sinha, T.; Bowling, L.C.; Schoups, G.H.; Wallender, W.W.; Campana, M.E.; Cherkauer, K.A.; Fuller, P.L.; Graf, W.L.; Hopmans, J.W.; et al. Reclaiming freshwater sustainability in the Cadillac Desert. Proc. Natl. Acad. Sci. USA 2010, 107, 21263–21269. [Google Scholar] [CrossRef] [Green Version]
- Blas, A.; Garrido, A.; Willaarts, B.A. Evaluating the Water Footprint of the Mediterranean and American Diets. Water 2016, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Birney, C.I.; Franklin, K.F.; Davidson, F.T.; Webber, M.E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 2017, 12, 105008. [Google Scholar] [CrossRef]
- Kim, B.F.; Santo, R.E.; Scatterday, A.P.; Fry, J.P.; Synk, C.M.; Cebron, S.R.; Mekonnen, M.M.; Hoekstra, A.Y.; de Pee, S.; Bloem, M.W.; et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Chang. 2020, 62. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 2018, 43. [Google Scholar] [CrossRef]
- Rushforth, R.R.; Adams, E.A.; Ruddell, B.L. Generalizing ecological, water and carbon footprint methods and their worldview assumptions using Embedded Resource Accounting. Water Resour. Ind. 2013, 1, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Vora, N.; Fath, B.D.; Khanna, V. A Systems Approach To Assess Trade Dependencies in US Food–Energy–Water Nexus. Environ. Sci. Technol. 2019, 53, 10941–10950. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Ruess, P.J.; Marston, L.; Konar, M. Food flows between counties in the United States. Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Debaere, P.; Li, T. The effects of water markets: Evidence from the Rio Grande. Adv. Water Resour. 2020, 145. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Butler, J.J.; Hyndman, D.W. Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains Aquifer. Environ. Res. Lett. 2019, 14, 044014. [Google Scholar] [CrossRef]
- Cody, K.C.; Smith, S.M.; Cox, M.; Andersson, K. Emergence of collective action in a groundwater commons: irrigators in the San Luis Valley of Colorado. Soc. Nat. Resour. 2015, 28, 405–422. [Google Scholar] [CrossRef] [Green Version]
- Ruddell, B.L. Threshold Based Footprints (for Water). Water 2018, 10, 1029. [Google Scholar] [CrossRef] [Green Version]
- Ruddell, B.L.; Adams, E.A.; Rushforth, R.; Tidwell, V.C. Embedded resource accounting for coupled natural-human systems: An application to water resource impacts of the western US electrical energy trade. Water Resour. Res. 2014, 50, 7957–7972. [Google Scholar] [CrossRef]
- Rushforth, R.R.; Ruddell, B.L. The hydro-economic interdependency of cities: Virtual water connections of the Phoenix, Arizona Metropolitan Area. Sustainability 2015, 7, 8522–8547. [Google Scholar] [CrossRef] [Green Version]
- Hogeboom, R.J.; de Bruin, D.; Schyns, J.F.; Krol, M.S.; Hoekstra, A.Y. Capping Human Water Footprints in the World’s River Basins. Earth’s Future 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, E.; Madan, K.; Hoekstra, A.Y. The water footprint of water conservation using shade balls in California. Nat. Sustain. 2018, 1, 358–360. [Google Scholar] [CrossRef]
- Pfeiffer, L.; Lin, C.Y.C. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. J. Environ. Econ. Manag. 2014, 67, 189–208. [Google Scholar] [CrossRef] [Green Version]
- Read, Q.D.; Brown, S.; Cuéllar, A.D.; Finn, S.M.; Gephart, J.A.; Marston, L.T.; Meyer, E.; Weitz, K.A.; Muth, M.K. Assessing the environmental impacts of halving food loss and waste along the food supply chain. Sci. Total Environ. 2020, 712, 136255. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.; Hoekstra, A.Y. Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 2014, 18, 2219. [Google Scholar] [CrossRef] [Green Version]
- Evenson, E.J.; Jones, S.A.; Barber, N.L.; Barlow, P.M.; Blodgett, D.L.; Bruce, B.W.; Douglas-Mankin, K.; Farmer, W.H.; Fischer, J.M.; Hughes, W.B.; et al. Continuing Progress Toward a National Assessment of Water Availability and Use; Technical Report; U.S. Geological Survey: Reston, VA, USA, 2018.
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption. Volume 1: Main Report; UNESCO-IHE: Delft, The Netherlands, 2011. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Dickson, K.E.; Marston, L.T.; Dzombak, D.A. Editorial Perspectives: the need for a comprehensive, centralized database of interbasin water transfers in the United States. Environ. Sci. Water Res. Technol. 2020, 6, 420–422. [Google Scholar] [CrossRef]
- Vanham, D.; Leip, A.; Galli, A.; Kastner, T.; Bruckner, M.; Uwizeye, A.; Van Dijk, K.; Ercin, E.; Dalin, C.; Bastianoni, S.; et al. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci. Total Environ. 2019, 693. [Google Scholar] [CrossRef]
- Dang, Q.; Konar, M.; Debaere, P. Trade Openness and The Nutrient Use of Nationas. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. The water footprint of animal products. In The Meat Crisis: Developing More Sustainable Production and Consumption; Taylor & Francis: Abingdon, UK, 2010; pp. 22–33. [Google Scholar]
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. The consumptive water footprint of electricity and heat: a global assessment. Environ. Sci. Water Res. Technol. 2015, 1, 285–297. [Google Scholar] [CrossRef]
- White, M.; Gambone, M.; Yen, H.; Arnold, J.; Harmel, D.; Santhi, C.; Haney, R. Regional blue and green water balances and use by selected crops in the U.S. J. Am. Water Resour. Assoc. 2015, 51. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Sustainable, efficient, and equitable water use: the three pillars under wise freshwater allocation. Wiley Interdiscip. Rev. Water 2014, 1, 31–40. [Google Scholar] [CrossRef]
Study | Sector | Water Use | Water Source | Spatial Resolution | Spatial Coverage | Time Resolution | Time Period | Flows? | AYH Data? |
---|---|---|---|---|---|---|---|---|---|
Ahams et al. (2017) [49] | agriculture, industry | consumptive | blue, green | cities | 65 cities | annual | 2007 | Y | [93] |
Bae et al. (2018) [55] | agriculture, energy, industry | withdrawal | blue | state | Arizona | annual | 2010 | Y | N |
Birney et al. (2017) [74] | diet | consumptive | blue, green | nation | US | annual | 2010 | N | [93] |
Blas et al. (2016) [73] | diet | consumptive | blue, green, grey | nation | US, Spain | annual | 1996–2005 | N | [93] |
Brauman et al. (2020) [59] | agriculture, energy | consumptive | blue | facilities | 477 facilities | annual | 2012 | Y | N |
Chini et al. (2017)[52] | agriculture, energy | consumptive | green, blue | cities | 74 cities | annual | 2012 | Y | [93] |
Chini et al. (2018) [57] | electricity | both | blue, grey | PCA | US | annual | 2010–2016 | Y | N |
Chini et al. (2020) [44] | electricity | both | grey | basin | US | monthly | 2010–2016 | N | N |
Chiu et al. (2012) [39] | agriculture, energy | consumptive | blue, green, grey | county | US | * | * | N | N |
Dang et al. (2015) [56] | agriculture | consumptive | blue, green | states | US | annual | 2007 | Y | [93] |
Davis et al. (2017) [36] | agriculture | consumptive | blue, green | 250km | US | annual | 2000 | N | N |
Djehdian et al. (2019) [63] | agriculture, energy | consumptive | blue | cities | 69 cities | annual | 2012 | Y | [93] |
Dominguez-Faus et al. (2009) [37] | agriculture, energy | consumptive | blue, green | national | US | * | * | N | N |
Fulton et al. (2014) [35] | agriculture, industry | consumptive | blue, green, grey | local | California | annual | 2007 | N | [92,93,94] |
Fulton et al. (2019) [28] | agriculture | consumptive | blue, green, grey | county | California | annual | 2004–2015 | N | [94,100] |
Garcia et al. (2019) [62] | agriculture, industry | consumptive | blue, green | FAF zones | US | annual | 2007 | Y | [93] |
Garcia et al. (2020) [54] | agriculture, energy, industry | consumptive | blue | cities | 69 cities | annual | 2012 | Y | [93] |
Grubert et al. (2016) [47] | energy | consumptive | blue | point | US | annual | 2010–2014 | N | N |
Grubert et al. (2018) [19] | energy | both | blue, green | national | US | annual | 2014 | N | N |
Gumidyala et al. (2020) [21] | agriculture | consumptive | blue ** | FAF zones | US | annual | 2002; 2012 | Y | N |
Kondash et al. (2015) [42] | energy | both | blue | shale basins | US | annual | 2005–2014 | N | N |
Kondash et al. (2018) [41] | energy | both | blue | shale basins | US | annual | 2011–2016 | N | N |
Mahjabin et al. (2018) [69] | agriculture | consumptive | blue, green | 65 cities | 65 cities | annual | 2007 | Y | [93] |
Mahjabin et al. (2020) [60] | agriculture, energy | consumptive | blue, green | FAF zones | US | annual | 2007, 2012 | Y | [93] |
Marston et al. (2015) [23] | agriculture | consumptive | blue ** | major aquifers | US | annual | 2007 | Y | [92,93] |
Marston et al. (2017) [34] | agriculture | consumptive | blue, green ** | county | Central Valley | annual | 2011–2014 | Y | N |
Marston et al. (2018) [4] | agriculture, energy, industry | consumptive | blue, green ** | 5 arc minute | US | annual | 2010–2012 | N | [93] |
Marston et al. (2020) [53] | agriculture, energy, industry | consumptive | blue, green ** | 7.5 arc minute | US | monthly | 2007–2017 | N | [4] |
Mayer et al. (2016) [22] | agriculture, industry | both | blue ** | point | Great Lakes | annual | 2011 | Y | N |
Mekonnen et al. (2018) [76] | diet | consumptive | blue, green | national | US | daily | 2015–2020 | N | [92] |
Mekonnen et al. (2019) [29] | agriculture | consumptive | blue, green | national | US | annual | 1960–2016 | N | [93] |
Mubako et al. (2013) [27] | agriculture | consumptive | blue, green | state | US | annual | 2008 | Y | N |
Mubako et al. (2013) [51] | agriculture, energy, industry | both | blue, green | state | Illinois, California | annual | 2005 | Y | N |
Richter et al. (2020) [20] | agriculture | both | blue ** | 5 arc minute | US | monthly | 2010–2012 | Y | [4,93] |
Ruess et al. (2019) [68] | grain storage | consumptive | blue, green | county | US | annual | 2002, 2007, 2012 | N | [93] |
Rushforth et al. (2013) [77] | agriculture, energy, industry | consumptive | blue, green, grey | national | US | * | * | N | N |
Rushforth et al. (2015) [85] | agriculture, energy, industry | consumptive | blue | municipalities | Phoenix, AZ | annual | 2007 | Y | N |
Rushforth et al. (2016) [64] | agriculture, energy, industry | both | blue, green | county | US | annual | 2012 | Y | N |
Rushforth et al. (2018) [24] | agriculture, energy, industry | consumptive | blue, green | county | US | annual | 2012 | Y | N |
Sabo et al. (2010) [72] | agriculture, industrial, municipal | both | blue, green ** | 332 cities | US | annual | 2000 | Y | N |
Scanlon et al. (2016) [43] | energy | consumptive | blue | point | Bakken play | annual | 2005–2014 | N | N |
Scown et al. (2011) [40] | energy | both | blue, green | state | US | * | * | N | N |
Siddik et al. (2020) [48] | energy | consumptive | blue | point | US | annual | 2014–2017 | Y | [101] |
Veetil et al. (2016) [9] | agriculture | both | blue, green ** | counties | Savannah River | monthly | 1990–2013 | N | N |
Veetil et al. (2018) [10] | agriculture | both | blue, green ** | counties | Savannah River | monthly | 1990–2013 | N | N |
Veetil et al. (2020) [11] | agriculture | both | blue, green | counties | US | annual | 1995–2015 | N | N |
Vora et al. (2017) [61] | agriculture | withdrawal | blue | states | US | annual | 2012 | Y | N |
Vora et al. (2019) [78] | agriculture | withdrawals | blue | states | US | annual | 2012 | Y | N |
White et al. (2015) [102] | agriculture | consumptive | blue, green ** | HUC-8 | US | annual | 2005 | N | N |
Xu et al. (2018) [32] | vegetation | consumptive | green | county | US | annual | 2008 | N | N |
Xu et al. (2019) [33] | agriculture, energy | consumptive | blue ** | county | US | monthly | 1970–2040 | N | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konar, M.; Marston, L. The Water Footprint of the United States. Water 2020, 12, 3286. https://doi.org/10.3390/w12113286
Konar M, Marston L. The Water Footprint of the United States. Water. 2020; 12(11):3286. https://doi.org/10.3390/w12113286
Chicago/Turabian StyleKonar, Megan, and Landon Marston. 2020. "The Water Footprint of the United States" Water 12, no. 11: 3286. https://doi.org/10.3390/w12113286
APA StyleKonar, M., & Marston, L. (2020). The Water Footprint of the United States. Water, 12(11), 3286. https://doi.org/10.3390/w12113286